Depth Estimation of Optically Transparent Microrobots Using Convolutional and Recurrent Neural Networks

被引:0
作者
Grammatikopoulou, Maria [1 ]
Zhang, Lin [1 ]
Yang, Guang-Zhong [1 ]
机构
[1] Imperial Coll London, Hamlyn Ctr Robot Surg, London, England
来源
2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2018年
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimating the three-dimensional (3D) position of microrobots is necessary in order to develop closed-loop control techniques and to improve the user's 3D perception in the micro-scale. This paper describes a depth estimation method based on supervised learning for optically transparent microrobots of known geometry. The proposed methodology uses Convolutional Neural Networks (CNNs) combined with a Recurrent Network, in particular a Long Short-Term Memory (LSTM) cell for depth regression. The proposed depth regression model is independent of the 3D orientation of the microrobot and is robust to varying illumination levels while it uses learned data-specific features. The model is trained and validated using microscope images and ground truth data generated from 3D-printed microrobots imaged in an Optical Tweezers (OT) setup. The validation results demonstrate that the proposed trained model can reconstruct the depth of the microrobot independently of its 3D orientation with submicron accuracy for the test set.
引用
收藏
页码:4895 / 4900
页数:6
相关论文
共 14 条
[1]   Research in Automated Planning and Control for Micromanipulation [J].
Banerjee, Ashis Gopal ;
Gupta, Satyandra K. .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2013, 10 (03) :485-495
[2]   Visually Servoing Magnetic Intraocular Microdevices [J].
Bergeles, Christos ;
Kratochvil, Bradley E. ;
Nelson, Bradley J. .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (04) :798-809
[3]  
Collet A, 2009, IEEE INT CONF ROBOT, P3534
[4]  
Cui L, 2016, 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), P5210, DOI 10.1109/IROS.2016.7759766
[5]  
Eichhorn V, 2008, J MICRO-BIO ROBOT, V4, P27, DOI 10.1007/s12213-008-0001-2
[6]  
Garon M., 2017, IEEE T VISUALIZATION
[7]  
Grammatikopoulou Maria, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P5989, DOI 10.1109/ICRA.2017.7989707
[8]  
Grammatikopoulou M, 2017, IEEE INT C INT ROBOT, P2994, DOI 10.1109/IROS.2017.8206136
[9]  
Kudryavtsev AV, 2017, IEEE INT C INT ROBOT, P1134, DOI 10.1109/IROS.2017.8202284
[10]   Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields [J].
Liu, Fayao ;
Shen, Chunhua ;
Lin, Guosheng ;
Reid, Ian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) :2024-2039