Molecular architecture of native fibronectin fibrils

被引:77
作者
Frueh, Susanna Maria [1 ]
Schoen, Ingmar [1 ]
Ries, Jonas [2 ]
Vogel, Viola [1 ]
机构
[1] ETH, Dept Hlth Sci & Technol, Lab Appl Mechanobiol, CH-8093 Zurich, Switzerland
[2] European Mol Biol Lab, Cell Biol & Biophys Unit, D-69117 Heidelberg, Germany
关键词
GELATIN-BINDING DOMAIN; EXTRACELLULAR-MATRIX; SUPERRESOLUTION MICROSCOPY; ELECTRON-MICROSCOPY; SELF-ASSOCIATION; III MODULE; IN-VIVO; RESOLUTION; LOCALIZATION; FIBRILLOGENESIS;
D O I
10.1038/ncomms8275
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fibronectin fibrils within the extracellular matrix play central roles in physiological and pathological processes, yet many structural details about their hierarchical and molecular assembly remain unknown. Here we combine site-specific protein labelling with single-molecule localization by stepwise photobleaching or direct stochastic optical reconstruction microscopy (dSTORM), and determine the relative positions of various labelled sites within native matrix fibrils. Single end-labelled fibronectin molecules in fibrils display an average end-to-end distance of similar to 133 nm. Sampling of site-specific antibody epitopes along the thinnest fibrils (protofibrils) shows periodic punctate label patterns with similar to 95nm repeats and alternating N- and C-terminal regions. These measurements suggest an antiparallel 30-40 nm overlap between N-termini, suggesting that the first five type I modules bind type III modules of the adjacent molecule. Thicker fibres show random bundling of protofibrils without a well-defined line-up. This super-resolution microscopy approach can be applied to other fibrillar protein assemblies of unknown structure.
引用
收藏
页数:10
相关论文
共 70 条
[1]  
AGUIRRE KM, 1994, J BIOL CHEM, V269, P27863
[2]   The Streptococcal Binding Site in the Gelatin-binding Domain of Fibronectin Is Consistent with a Non-linear Arrangement of Modules [J].
Atkin, Kate E. ;
Brentnall, Andrew S. ;
Harris, Gemma ;
Bingham, Richard J. ;
Erat, Michele C. ;
Millard, Christopher J. ;
Schwarz-Linek, Ulrich ;
Staunton, David ;
Vakonakis, Ioannis ;
Campbell, Iain D. ;
Potts, Jennifer R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (47) :36977-36983
[3]   Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer [J].
Baneyx, G ;
Baugh, L ;
Vogel, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14464-14468
[4]   STRUCTURE OF THE FIBRONECTIN TYPE 1 MODULE [J].
BARON, M ;
NORMAN, D ;
WILLIS, A ;
CAMPBELL, ID .
NATURE, 1990, 345 (6276) :642-646
[5]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[6]   TRANSFORMED HUMAN-CELLS RELEASE DIFFERENT FIBRONECTIN VARIANTS THAN DO NORMAL-CELLS [J].
CASTELLANI, P ;
SIRI, A ;
ROSELLINI, C ;
INFUSINI, E ;
BORSI, L ;
ZARDI, L .
JOURNAL OF CELL BIOLOGY, 1986, 103 (05) :1671-1677
[7]   Stretching fibronectin fibres disrupts binding of bacterial adhesins by physically destroying an epitope [J].
Chabria, Mamta ;
Hertig, Samuel ;
Smith, Michael L. ;
Vogel, Viola .
NATURE COMMUNICATIONS, 2010, 1
[8]   STUDIES ON INTER-CELLULAR LETS GLYCOPROTEIN MATRICES [J].
CHEN, LB ;
MURRAY, A ;
SEGAL, RA ;
BUSHNELL, A ;
WALSH, ML .
CELL, 1978, 14 (02) :377-391
[9]   High-resolution cryo-scanning electron microscopy study of the macromolecular structure of fibronectin fibrils [J].
Chen, Y ;
Zardi, L ;
Peters, DMP .
SCANNING, 1997, 19 (05) :349-355
[10]  
CHERNOUSOV MA, 1991, J BIOL CHEM, V266, P10851