Molecular architecture of native fibronectin fibrils

被引:74
作者
Frueh, Susanna Maria [1 ]
Schoen, Ingmar [1 ]
Ries, Jonas [2 ]
Vogel, Viola [1 ]
机构
[1] ETH, Dept Hlth Sci & Technol, Lab Appl Mechanobiol, CH-8093 Zurich, Switzerland
[2] European Mol Biol Lab, Cell Biol & Biophys Unit, D-69117 Heidelberg, Germany
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
GELATIN-BINDING DOMAIN; EXTRACELLULAR-MATRIX; SUPERRESOLUTION MICROSCOPY; ELECTRON-MICROSCOPY; SELF-ASSOCIATION; III MODULE; IN-VIVO; RESOLUTION; LOCALIZATION; FIBRILLOGENESIS;
D O I
10.1038/ncomms8275
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fibronectin fibrils within the extracellular matrix play central roles in physiological and pathological processes, yet many structural details about their hierarchical and molecular assembly remain unknown. Here we combine site-specific protein labelling with single-molecule localization by stepwise photobleaching or direct stochastic optical reconstruction microscopy (dSTORM), and determine the relative positions of various labelled sites within native matrix fibrils. Single end-labelled fibronectin molecules in fibrils display an average end-to-end distance of similar to 133 nm. Sampling of site-specific antibody epitopes along the thinnest fibrils (protofibrils) shows periodic punctate label patterns with similar to 95nm repeats and alternating N- and C-terminal regions. These measurements suggest an antiparallel 30-40 nm overlap between N-termini, suggesting that the first five type I modules bind type III modules of the adjacent molecule. Thicker fibres show random bundling of protofibrils without a well-defined line-up. This super-resolution microscopy approach can be applied to other fibrillar protein assemblies of unknown structure.
引用
收藏
页数:10
相关论文
共 70 条
  • [1] AGUIRRE KM, 1994, J BIOL CHEM, V269, P27863
  • [2] The Streptococcal Binding Site in the Gelatin-binding Domain of Fibronectin Is Consistent with a Non-linear Arrangement of Modules
    Atkin, Kate E.
    Brentnall, Andrew S.
    Harris, Gemma
    Bingham, Richard J.
    Erat, Michele C.
    Millard, Christopher J.
    Schwarz-Linek, Ulrich
    Staunton, David
    Vakonakis, Ioannis
    Campbell, Iain D.
    Potts, Jennifer R.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (47) : 36977 - 36983
  • [3] Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer
    Baneyx, G
    Baugh, L
    Vogel, V
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) : 14464 - 14468
  • [4] STRUCTURE OF THE FIBRONECTIN TYPE 1 MODULE
    BARON, M
    NORMAN, D
    WILLIS, A
    CAMPBELL, ID
    [J]. NATURE, 1990, 345 (6276) : 642 - 646
  • [5] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [6] TRANSFORMED HUMAN-CELLS RELEASE DIFFERENT FIBRONECTIN VARIANTS THAN DO NORMAL-CELLS
    CASTELLANI, P
    SIRI, A
    ROSELLINI, C
    INFUSINI, E
    BORSI, L
    ZARDI, L
    [J]. JOURNAL OF CELL BIOLOGY, 1986, 103 (05) : 1671 - 1677
  • [7] Stretching fibronectin fibres disrupts binding of bacterial adhesins by physically destroying an epitope
    Chabria, Mamta
    Hertig, Samuel
    Smith, Michael L.
    Vogel, Viola
    [J]. NATURE COMMUNICATIONS, 2010, 1
  • [8] STUDIES ON INTER-CELLULAR LETS GLYCOPROTEIN MATRICES
    CHEN, LB
    MURRAY, A
    SEGAL, RA
    BUSHNELL, A
    WALSH, ML
    [J]. CELL, 1978, 14 (02) : 377 - 391
  • [9] High-resolution cryo-scanning electron microscopy study of the macromolecular structure of fibronectin fibrils
    Chen, Y
    Zardi, L
    Peters, DMP
    [J]. SCANNING, 1997, 19 (05) : 349 - 355
  • [10] CHERNOUSOV MA, 1991, J BIOL CHEM, V266, P10851