Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Motivic zeta functions for degenerations of abelian varieties and Calabi-Yau varieties
    Halle, Lars Halvard
    Nicaise, Johannes
    ZETA FUNCTIONS IN ALGEBRA AND GEOMETRY, 2012, 566 : 233 - +
  • [32] Modular forms and hierarchical Yukawa couplings in heterotic Calabi-Yau compactifications
    Ishiguro, Keiya
    Kobayashi, Tatsuo
    Nishimura, Satsuki
    Otsuka, Hajime
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [33] Algebra of Kodaira-Spencer gravity and deformation of Calabi-Yau manifold
    Mohri, Kenji
    REVIEWS IN MATHEMATICAL PHYSICS, 2017, 29 (04)
  • [34] On K3 fibred Calabi-Yau threefolds in weighted scrolls
    Mboya, Geoffrey
    Szendroi, Balazs
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 621 - 635
  • [35] Gromov-Witten Theory of Quotients of Fermat Calabi-Yau Varieties
    Iritani, Hiroshi
    Milanov, Todor
    Ruan, Yongbin
    Shen, Yefeng
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 269 (1310) : 1 - +
  • [36] SYMPLECTIC CALABI-YAU MANIFOLDS, MINIMAL SURFACES AND THE HYPERBOLIC GEOMETRY OF THE CONIFOLD
    Fine, Joel
    Panov, Dmitri
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 82 (01) : 155 - 205
  • [37] Non-geometric Calabi-Yau backgrounds and K3 automorphisms
    Hull, C. M.
    Israel, D.
    Sarti, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [38] Stability condition on Calabi-Yau threefold of complete intersection of quadratic and quartic hypersurfaces
    Liu, Shengxuan
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [39] The Ising model: from elliptic curves to modular forms and Calabi-Yau equations
    Bostan, A.
    Boukraa, S.
    Hassani, S.
    van Hoeij, M.
    Maillard, J-M
    Weil, J-A
    Zenine, N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (04)
  • [40] Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections
    Fu, Lie
    ADVANCES IN MATHEMATICS, 2013, 244 : 894 - 924