Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Nilpotent Higgs Bundles and the Hodge Metric on the Calabi-Yau Moduli
    Li, Qiongling
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (09) : 6705 - 6741
  • [22] Triviality of fibered Calabi-Yau manifolds without singular fibers
    Tosatti, Valentino
    Zhang, Yuguang
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (04) : 905 - 918
  • [23] COUNTING SHEAVES ON CALABI-YAU 4-FOLDS, I
    Oh, Jeongseok
    Thomas, Richard P.
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (07) : 1333 - 1409
  • [24] Classifying Calabi-Yau Threefolds Using Infinite Distance Limits
    Grimm, Thomas W.
    Ruehle, Fabian
    van de Heisteeg, Damian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 239 - 275
  • [25] Number of triple points on complete intersection Calabi-Yau threefolds
    Grzelakowski, Kacper
    ANNALES POLONICI MATHEMATICI, 2023, 131 (02) : 141 - 151
  • [26] BALANCED METRICS ON NON-KAHLER CALABI-YAU THREEFOLDS
    Fu, Jixiang
    Li, Jun
    Yau, Shing-Tung
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 90 (01) : 81 - 129
  • [27] Stabilization of a twisted modulus on a mirror of rigid Calabi-Yau manifold
    Ishiguro, Keiya
    Kai, Takafumi
    Otsuka, Hajime
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (10):
  • [28] Darboux–Halphen–Ramanujan Vector Field on a Moduli of Calabi-Yau Manifolds
    Younes Nikdelan
    Qualitative Theory of Dynamical Systems, 2015, 14 : 71 - 100
  • [29] The hybrid Landau-Ginzburg models of Calabi-Yau complete intersections
    Chiodo, Alessandro
    Nagel, Jan
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 103 - 117
  • [30] Heterotic models from vector bundles on toric Calabi-Yau manifolds
    He, Yang-Hui
    Lee, Seung-Joo
    Lukas, Andre
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):