Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] SPECIAL LAGRANGIAN SUBMANIFOLDS OF LOG CALABI-YAU MANIFOLDS
    Collins, Tristan C.
    Jacob, Adam
    Lin, Yu-Shen
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (07) : 1291 - 1375
  • [12] Applications of affine structures to Calabi-Yau moduli spaces
    Liu, Kefeng
    Shen, Yang
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (02) : 313 - 349
  • [13] A Hypergeometric Version of the Modularity of Rigid Calabi-Yau Manifolds
    Zudilin, Wadim
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [14] Polarized variation of Hodge structures of Calabi-Yau type and characteristic subvarieties over bounded symmetric domains
    Sheng, Mao
    Zuo, Kang
    MATHEMATISCHE ANNALEN, 2010, 348 (01) : 211 - 236
  • [15] Zeta functions of alternate mirror Calabi-Yau families
    Doran, Charles F.
    Kelly, Tyler L.
    Salerno, Adriana
    Sperber, Steven
    Voight, John
    Whitcher, Ursula
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 228 (02) : 665 - 705
  • [16] New Calabi-Yau orbifolds with mirror Hodge diamonds
    Stapledon, Alan
    ADVANCES IN MATHEMATICS, 2012, 230 (4-6) : 1557 - 1596
  • [17] Asymptotic Curvature of Moduli Spaces for Calabi-Yau Threefolds
    Trenner, Thomas
    Wilson, P. M. H.
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (02) : 409 - 428
  • [18] Log Hodge Groups on a Toric Calabi-Yau Degeneration
    Ruddat, Helge
    MIRROR SYMMETRY AND TROPICAL GEOMETRY, 2010, 527 : 113 - 164
  • [19] A note on periods of Calabi-Yau fractional complete intersections
    Lee, Tsung-Ju
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (04)
  • [20] Machine learning on generalized complete intersection Calabi-Yau manifolds
    Cui, Wei
    Gao, Xin
    Wang, Juntao
    PHYSICAL REVIEW D, 2023, 107 (08)