Bounded Collection of Feynman Integral Calabi-Yau Geometries

被引:82
|
作者
Bourjaily, Jacob L. [1 ,2 ]
McLeod, Andrew J. [1 ,2 ]
von Hippel, Matt [1 ,2 ]
Wilhelm, Matthias [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会;
关键词
HODGE STRUCTURE; DIAGRAMS; SERIES; HYPERSURFACES; SPACE; GRAPH;
D O I
10.1103/PhysRevLett.122.031601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L - 1) at L loops provided they are in the class that we call marginal: those with (L + 1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless phi(4) theory that saturate our predicted bound in rigidity at all loop orders.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Degenerations of Calabi-Yau threefolds and BCOV invariants
    Yoshikawa, Ken-Ichi
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (04)
  • [2] Moduli spaces of Calabi-Yau complete intersections
    Hosono, Shinobu
    NUCLEAR PHYSICS B, 2015, 898 : 661 - 666
  • [3] Mirror symmetry and elliptic Calabi-Yau manifolds
    Huang, Yu-Chien
    Taylor, Washington
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
  • [4] Neural network approximations for Calabi-Yau metrics
    Jejjala, Vishnu
    Pena, Damian Kaloni Mayorga
    Mishra, Challenger
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [5] THE EMBEDDED CALABI-YAU CONJECTURE FOR FINITE GENUS
    Meeks, William H., III
    Perez, Joaquin
    Ros, Antonio
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (13) : 2891 - 2956
  • [6] Supercongruences for rigid hypergeometric Calabi-Yau threefolds
    Long, Ling
    Tu, Fang-Ting
    Yui, Noriko
    Zudilin, Wadim
    ADVANCES IN MATHEMATICS, 2021, 393
  • [7] The Mahler measure of a Calabi-Yau threefold and special -values
    Papanikolas, Matthew A.
    Rogers, Mathew D.
    Samart, Detchat
    MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (3-4) : 1151 - 1163
  • [8] The Basso-Dixon formula and Calabi-Yau geometry
    Duhr, Claude
    Klemm, Albrecht
    Loebbert, Florian
    Nega, Christoph
    Porkert, Franziska
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [9] Finiteness of Calabi-Yau Quasismooth Weighted Complete Intersections
    Chen, Jheng-Jie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) : 3793 - 3809
  • [10] Nongeometric Calabi-Yau compactifications and fractional mirror symmetry
    Israel, Dan
    PHYSICAL REVIEW D, 2015, 91 (06):