Open Set Recognition of Timber Species Using Deep Learning for Embedded Systems

被引:5
|
作者
Apolinario, M. [1 ]
Urcia, D. [1 ]
Huaman, S. [1 ]
机构
[1] UNI, Inst Nacl Invest & Capacitac Telecomunicac INICTE, Lima, Peru
关键词
convolutional neural network; embedded system; open set recognition; timber species;
D O I
10.1109/TLA.2019.9011545
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reliable and rapid identification of timber species is a very relevant issue for many countries in South America and especially for Peru, which is the second country with the largest extent of tropical forest, and that is because this issue is a necessity in order to develop an effective management of the forest resources, such as inspection and control of the timber commerce. Since current methods of identification are based on a closed set recognition approach, they are not reliable enough to be used in a practical application because scenarios of identification of timber species are by nature an open set recognition problem. For that reason, in this work we propose a convolutional neural network that has two main characteristics, being able to run in a real-time embedded system and being able to handle the open set recognition problem, that is, this model can discriminate between known and unknown species. In order to evaluate it, tests are performed in two timber species datasets and some experiments are developed in the embedded system Raspberry Pi3B+ to measure energy consumption. The results present high metrics, which means that it manages to discriminate the unknown species with accuracy and F1 score above 91% for two sets of images used. In addition to this, our proposed model obtain lower maximum power value (10-12%) and computational resource usage (5-13%) than a classical convolutional model and MobileNetsV2 measured on the Raspberry Pi3B+.
引用
收藏
页码:2005 / 2012
页数:8
相关论文
共 50 条
  • [1] Deep Active Learning via Open-Set Recognition
    Mandivarapu, Jaya Krishna
    Camp, Blake
    Estrada, Rolando
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [2] An emotion recognition embedded system using a lightweight deep learning model
    Bazargani, Mehdi
    Tahmasebi, Amir
    Yazdchi, Mohammadreza
    Baharlouei, Zahra
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2023, 13 (04): : 272 - 279
  • [3] Open Set Recognition of Communication Signal Modulation Based on Deep Learning
    Zhang, Xinliang
    Li, Tianyun
    Gong, Pei
    Liu, Renwei
    Zha, Xiong
    Tang, Wenqi
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1588 - 1592
  • [4] An Open-Set Modulation Recognition Scheme With Deep Representation Learning
    Chen, Yanghong
    Xu, Xiaodong
    Qin, Xiaowei
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (03) : 851 - 855
  • [5] Deep metric learning for open-set human action recognition in videos
    Matheus Gutoski
    André Eugênio Lazzaretti
    Heitor Silvério Lopes
    Neural Computing and Applications, 2021, 33 : 1207 - 1220
  • [6] Deep metric learning for open-set human action recognition in videos
    Gutoski, Matheus
    Lazzaretti, Andre Eugenio
    Lopes, Heitor Silverio
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (04): : 1207 - 1220
  • [7] Deep learning enabled open-set bacteria recognition using surface-enhanced Raman spectroscopy
    Cao, Hanyu
    Cheng, Jie
    Ma, Xing
    Liu, Shan
    Guo, Jinhong
    Li, Diangeng
    BIOSENSORS & BIOELECTRONICS, 2025, 276
  • [8] Intelligent Radar Jamming Recognition in Open Set Environment Based on Deep Learning Networks
    Zhou, Yu
    Shang, Song
    Song, Xing
    Zhang, Shiyu
    You, Tianqi
    Zhang, Linrang
    REMOTE SENSING, 2022, 14 (24)
  • [9] Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition
    Mundt, Martin
    Pliushch, Iuliia
    Majumder, Sagnik
    Hong, Yongwon
    Ramesh, Visvanathan
    JOURNAL OF IMAGING, 2022, 8 (04)
  • [10] Deep Open Set Recognition Using Dynamic Intra-class Splitting
    Schlachter P.
    Liao Y.
    Yang B.
    SN Computer Science, 2020, 1 (2)