Assembling Fibonacci anyons from a Z3 parafermion lattice model

被引:44
作者
Stoudenmire, E. M. [1 ]
Clarke, David J. [2 ,3 ,4 ,5 ]
Mong, Roger S. K. [2 ,3 ,6 ,7 ]
Alicea, Jason [2 ,3 ,6 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] Univ Calif Santa Barbara, Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA
[5] Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA
[6] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[7] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
3-STATE POTTS ANTIFERROMAGNET; NON-ABELIAN ANYONS; MAJORANA FERMIONS; QUANTUM; DENSITY; SUPERCONDUCTOR; NANOWIRE; PARTICLE; SIGNATURE; CHARGE;
D O I
10.1103/PhysRevB.91.235112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent concrete proposals suggest it is possible to engineer a two-dimensional bulk phase supporting non-Abelian Fibonacci anyons out of Abelian fractional quantum Hall systems. The low-energy degrees of freedom of such setups can be modeled as Z(3) parafermions "hopping" on a two-dimensional lattice. We use the density matrix renormalization group to study a model of this type interpolating between the decoupled-chain, triangular-lattice, and square-lattice limits. The results show clear evidence of the Fibonacci phase over a wide region of the phase diagram, most notably including the isotropic triangular-lattice point. We also study the broader phase diagram of this model and show that elsewhere it supports an Abelian state with semionic excitations.
引用
收藏
页数:18
相关论文
共 73 条
[1]   New directions in the pursuit of Majorana fermions in solid state systems [J].
Alicea, Jason .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
[2]  
An S., ARXIV11123400
[3]   Generalized Kitaev Models and Extrinsic Non-Abelian Twist Defects [J].
Barkeshli, Maissam ;
Jiang, Hong-Chen ;
Thomale, Ronny ;
Qi, Xiao-Liang .
PHYSICAL REVIEW LETTERS, 2015, 114 (02)
[4]   Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems [J].
Barkeshli, Maissam ;
Qi, Xiao-Liang .
PHYSICAL REVIEW X, 2014, 4 (04)
[5]   Twist defects and projective non-Abelian braiding statistics [J].
Barkeshli, Maissam ;
Jian, Chao-Ming ;
Qi, Xiao-Liang .
PHYSICAL REVIEW B, 2013, 87 (04)
[6]   Topological Nematic States and Non-Abelian Lattice Dislocations [J].
Barkeshli, Maissam ;
Qi, Xiao-Liang .
PHYSICAL REVIEW X, 2012, 2 (03)
[7]   Search for Majorana Fermions in Superconductors [J].
Beenakker, C. W. J. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4, 2013, 4 :113-136
[8]   Measurement-only topological quantum computation [J].
Bonderson, Parsa ;
Freedman, Michael ;
Nayak, Chetan .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[9]   Topological phases in two-dimensional arrays of parafermionic zero modes [J].
Burrello, M. ;
van Heck, B. ;
Cobanera, E. .
PHYSICAL REVIEW B, 2013, 87 (19)
[10]   Entanglement entropy and conformal field theory [J].
Calabrese, Pasquale ;
Cardy, John .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)