Logarithmic uncertainty principle for the Hankel transform

被引:23
作者
Omri, S. [1 ]
机构
[1] Inst Preparatoire Etud Ingenieurs Nabeul, Dept Math Appl, Merazka 8000, Nabeul, Tunisia
关键词
Hankel transform; Stein-Weiss inequality; B-Riesz potential; Pitt's inequality; logarithmic uncertainty principle; CONVOLUTION; INVERSION; SPACES;
D O I
10.1080/10652469.2010.537266
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Beckner's logarithmic uncertainty principle is proved for the Hankel transform.
引用
收藏
页码:655 / 670
页数:16
相关论文
共 24 条
[1]  
ALIEV IA, 1988, REP ENLARG SESS SEMI, V3, P21
[2]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[3]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[4]   Lipschitz-Hankel spaces and partial Hankel integrals [J].
Betancor, JJ ;
Rodriguez-Messa, L .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (1-2) :1-12
[5]   Weighted inequalities for Hankel convolution operators [J].
Betancor, JJ ;
Rodríguez-Mesa, L .
ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) :230-245
[6]  
Betancor JJ, 1996, STUD MATH, V121, P35
[7]  
Bowie P. C., 1971, SIAM J MATH ANAL, V2, P601
[8]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238
[9]  
GADJIEV AD, 2008, FRACT CALC APPL ANAL, V11, P77
[10]  
Grafakos L., 2008, GRAD TEXTS MATH, V249