An Effective and Simple Scheme for Solving Nonlinear Fredholm Integral Equations

被引:3
作者
Shahsavaran, Ahmad [1 ]
Fotros, Forough [1 ]
机构
[1] Islamic Azad Univ, Borujerd Branch, Young Researchers & Elite Club, Takhti St, Borujerd, Iran
关键词
Fredholm integral equation; Lagrange polynomials; Gauss-Legendre integration; interpolation; convergence and stability; NUMERICAL-SOLUTION; COLLOCATION METHOD; KERNEL;
D O I
10.3846/mma.2022.14194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a simple scheme is constructed for finding approximate solution of the nonlinear Fredholm integral equation of the second kind. To this end, the Lagrange interpolation polynomials together with the Gauss-Legendre quadrature rule are used to transform the source problem to a system of nonlinear algebraic equations. Afterwards, the resulting system can be solved by the Newton method. The basic idea is to choose the Lagrange interpolation points to be the same as the points for the Gauss-Legendre integration. This facilitates the evaluation of the integral part of the equation. We prove that the approximate solution converges uniformly to the exact solution. Also, stability of the approximate solution is investigated. The advantages of the method are simplicity, fastness and accuracy which enhance its applicability in practical situations. Finally, we provide some test examples.
引用
收藏
页码:215 / 231
页数:17
相关论文
共 50 条
[21]   A New Wavelet Method for Solving a Class of Nonlinear Volterra-Fredholm Integral Equations [J].
Wang, Xiaomin .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[22]   Nonlinear Fredholm integral equations and majorant functions [J].
Ezquerro, J. A. ;
Hernandez-Veron, M. A. .
NUMERICAL ALGORITHMS, 2019, 82 (04) :1303-1323
[23]   Solving Fredholm integral equations of the first kind using Muntz wavelets [J].
Bahmanpour, Maryam ;
Kajani, Majid Tavassoli ;
Maleki, Mohammad .
APPLIED NUMERICAL MATHEMATICS, 2019, 143 :159-171
[24]   Bernstein polynomials method for solving Volterra-Fredholm integral equations [J].
Hesameddini, Esmail ;
Khorramizadeh, Mostafa ;
Shahbazi, Mehdi .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (01) :59-68
[25]   Solving Fredholm Integral Equations Using Deep Learning [J].
Guan Y. ;
Fang T. ;
Zhang D. ;
Jin C. .
International Journal of Applied and Computational Mathematics, 2022, 8 (2)
[26]   Nonlinear Fredholm integral equations and majorant functions [J].
J. A. Ezquerro ;
M. A. Hernández-Verón .
Numerical Algorithms, 2019, 82 :1303-1323
[27]   LP modelling for the two dimensional nonlinear Fredholm integral equations [J].
Nazemi, A. R. .
SCIENTIA IRANICA, 2015, 22 (01) :165-174
[28]   A MIXED COLLOCATION SCHEME FOR SOLVING SECOND KIND FREDHOLM INTEGRAL EQUATIONS IN [-1,1] [J].
Occorsio, Donatella ;
Russo, Maria Grazia .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2021, 54 :443-459
[29]   Collocation method for solving two-dimensional nonlinear Volterra-Fredholm integral equations with convergence analysis [J].
Mi, Jian ;
Huang, Jin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
[30]   Improved composite methods using radial basis functions for solving nonlinear Volterra-Fredholm integral equations [J].
Takouk, Dalila ;
Zeghdane, Rebiha ;
Lakehali, Belkacem .
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2024, 19 (02) :93-106