The elimination of errors caused by shadow in fringe projection profilometry based on deep learning

被引:12
作者
Wang, Chenxing [1 ,2 ]
Pang, Qi [1 ,2 ]
机构
[1] Southeast Univ, Sch Automat, 2 Sipailou, Nanjing 210096, Peoples R China
[2] Southeast Univ, Minist Educ, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Fringe projection profilometry; Fringe image; Shadow repairment; FOURIER-TRANSFORM PROFILOMETRY; 3-D SHAPE MEASUREMENT; REMOVAL METHOD; PHASE ERROR; GRAY-CODE; RECONSTRUCTION; COMPENSATION; LIGHT;
D O I
10.1016/j.optlaseng.2022.107203
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The fringe projection profilometry (FPP) has been regarded as a classical and mature technique for 3D shape measurement. However, in practical applications, shadow is un-avoided in the imaging process and causes errors in many FPP systems. In this paper, the errors in FPP systems caused by shadow are first analyzed. Then, a direction-aware spatial context module based network is proposed for detecting the shadow regions of a fringe image. Further, a repairment method is developed based on a generative adversarial network combining some simple processes. The training datasets are rendered by a graphic software to easy the training of the networks. The proposed method can repair the shadow regions successfully with only one fringe image and so it can be applied in varieties of FPP systems. The feasibility and the accuracy of improved by the proposed method have been illustrated by abundant experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Determination of optimal binary defocusing based on digital correlation for fringe projection profilometry
    Kang, Xin
    Yin, Zhuoyi
    Dong, Shuai
    He, Xiaoyuan
    OPTIK, 2023, 272
  • [32] Single-Model Self-Recovering Fringe Projection Profilometry Absolute Phase Recovery Method Based on Deep Learning
    Li, Xu
    Shen, Yihao
    Meng, Qifu
    Xing, Mingyi
    Zhang, Qiushuang
    Yang, Hualin
    SENSORS, 2025, 25 (05)
  • [33] Decomposition and compensation of fringe harmonic errors by use of their partial orthogonality in phase-shifting fringe projection profilometry
    Zhu, Jianli
    Lin, Shuai
    Guo, Hongwei
    APPLIED OPTICS, 2024, 63 (30) : 7996 - 8006
  • [34] Improved Circular Fringe Projection Profilometry Based on Fourier Transform
    Wang Ye
    Chen Wenjing
    Han Mengqi
    ACTA OPTICA SINICA, 2022, 42 (13)
  • [35] Generalized Technique for Separating Nonsinusoidal Errors in Fringe Projection Profilometry With Arbitrary Phase Shifts
    Zhu, Jianli
    Zhu, Huijie
    Guo, Hongwei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [36] Fringe Order Correction for Fringe Projection Profilometry Based on Robust Principal Component Analysis
    Zhang, Yiwei
    Tong, Jun
    Lu, Lei
    Xi, Jiangtao
    Yu, Yanguang
    Guo, Qinghua
    IEEE ACCESS, 2021, 9 : 23110 - 23119
  • [37] Fringe Pattern Analysis With Message Passing Based Expectation Maximization for Fringe Projection Profilometry
    Guo, Qinghua
    Xi, Jiangtao
    Song, Limei
    Yu, Yanguang
    Yin, Yongkai
    Peng, Xiang
    IEEE ACCESS, 2016, 4 : 4310 - 4320
  • [38] Hilbert transform based phase extraction algorithm for fringe projection profilometry
    Chatterjee, Amit
    Singh, Puneet
    Bhatia, Vimal
    Prakash, Shashi
    2018 3RD INTERNATIONAL CONFERENCE ON MICROWAVE AND PHOTONICS (ICMAP), 2018,
  • [39] Measurement Simulation System of Fringe Projection Profilometry Based on Ray Tracing
    Zhang, Qiushuang
    Xing, Mingyi
    Li, Hongbin
    Li, Xu
    Wang, Tingli
    IEEE ACCESS, 2023, 11 : 89616 - 89624
  • [40] Using facial landmarks to assist the stereo matching in fringe projection based 3D face profilometry
    Guo, Yanqiong
    Zhu, Jiangping
    Jing, Hailong
    Zhou, Pei
    Xiao, Ning
    OPTICAL ENGINEERING, 2021, 60 (07)