Numerical Solution of a Class of Time-Fractional Order Diffusion Equations in a New Reproducing Kernel Space

被引:1
|
作者
Zhang, Xiaoli [1 ,2 ]
Zhang, Haolu [3 ]
Jia, Lina [2 ]
Wang, Yulan [2 ]
Zhang, Wei [1 ]
机构
[1] Jining Normal Univ, Inst Econ & Management, Jining 012000, Inner Mongolia, Peoples R China
[2] Inner Mongolia Univ Technol, Dept Math, Hohhot 010051, Peoples R China
[3] Inner Mongolia Univ Technol, Sch Civil Engn, Hohhot 010051, Peoples R China
关键词
BOUNDARY-VALUE-PROBLEMS; INTEGRODIFFERENTIAL EQUATIONS; DIFFERENTIAL-EQUATIONS; COLLOCATION METHOD;
D O I
10.1155/2020/1794975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we structure some new reproducing kernel spaces based on Jacobi polynomial and give a numerical solution of a class of time fractional order diffusion equations using piecewise reproducing kernel method (RKM). Compared with other methods, numerical results show the reliability of the present method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Numerical solution of the multiterm time-fractional diffusion equation based on reproducing kernel theory
    Hemati, Farshad
    Ghasemi, Mehdi
    Khoshsiar Ghaziani, Reza
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 44 - 68
  • [2] Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method
    Wang, Yu-Lan
    Jia, Li-na
    Zhang, Hao-lu
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (10) : 2100 - 2111
  • [3] Numerical solution of the space-time fractional diffusion equation based on fractional reproducing kernel collocation method
    Sun, Rui
    Yang, Jiabao
    Yao, Huanmin
    CALCOLO, 2023, 60 (02)
  • [4] Numerical solution of the space-time fractional diffusion equation based on fractional reproducing kernel collocation method
    Rui Sun
    Jiabao Yang
    Huanmin Yao
    Calcolo, 2023, 60
  • [5] Exact solution of a class of fractional integro-differential equations with the weakly singular kernel based on a new fractional reproducing kernel space
    Chen, Zhong
    Wu, Longbin
    Lin, Yingzhen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (10) : 3841 - 3855
  • [6] On Time-Fractional Diffusion Equations with Space-Dependent Variable Order
    Kian, Yavar
    Soccorsi, Eric
    Yamamoto, Masahiro
    ANNALES HENRI POINCARE, 2018, 19 (12): : 3855 - 3881
  • [7] THE PIECEWISE REPRODUCING KERNEL METHOD FOR THE TIME VARIABLE FRACTIONAL ORDER ADVECTION-REACTION-DIFFUSION EQUATIONS
    Dai, Dan-Dan
    Ban, Ting-Ting
    Wang, Yu-Lan
    Zhang, Wei
    THERMAL SCIENCE, 2021, 25 (02): : 1261 - 1268
  • [8] Iterative reproducing kernel method for nonlinear variable-order space fractional diffusion equations
    Li, X. Y.
    Wu, B. Y.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1210 - 1221
  • [9] APPLICATION OF REPRODUCING KERNEL ALGORITHM FOR SOLVING DIRICHLET TIME-FRACTIONAL DIFFUSION-GORDON TYPES EQUATIONS IN POROUS MEDIA
    Abu Arqub, Omar
    Shawagfeh, Nabil
    JOURNAL OF POROUS MEDIA, 2019, 22 (04) : 411 - 434
  • [10] A class of time-fractional diffusion equations with generalized fractional derivatives
    Alikhanov, Anatoly A.
    Huang, Chengming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414