Oscillatory behavior of the domain wall dynamics in a curved cylindrical magnetic nanowire

被引:30
作者
Moreno, R. [1 ,2 ]
Carvalho-Santos, V. L. [3 ,4 ]
Espejo, A. P. [5 ]
Laroze, D. [6 ,7 ]
Chubykalo-Fesenko, O. [1 ]
Altbir, D. [5 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain
[2] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[3] Inst Fed Educ Ciencia & Tecnol Baiano, BR-48970000 Senhor Do Bonfim, Brazil
[4] Univ Fed Vicosa, Dept Fis, Ave Peter Henry Rolfs S-N, BR-36570000 Vicosa, MG, Brazil
[5] Univ Santiago Chile, CEDENNA, Dept Fis, Ave Ecuador 3493, Santiago, Chile
[6] Univ Tarapaca, CEDENNA, Inst Alta Invest, Casilla 7D, Arica, Chile
[7] Yachay Tech Univ, Sch Phys Sci & Nanotechnol, Urcuqui 00119, Ecuador
关键词
MOTION;
D O I
10.1103/PhysRevB.96.184401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the domain wall dynamics is an important issue in modern magnetism. Here we present results of domain wall displacement in curved cylindrical nanowires at a constant magnetic field. We show that the average velocity of a transverse domain wall increases with curvature. Contrary to what is observed in stripes, in a curved wire the transverse domain wall oscillates along and rotates around the nanowire with the same frequency. These results open the possibility of new oscillation-based applications.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
Aharoni A., 1996, Introduction to the Theory of Ferromagnetism
[2]   Submicrometer ferromagnetic NOT gate and shift register [J].
Allwood, DA ;
Xiong, G ;
Cooke, MD ;
Faulkner, CC ;
Atkinson, D ;
Vernier, N ;
Cowburn, RP .
SCIENCE, 2002, 296 (5575) :2003-2006
[3]   Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires [J].
Beach, GSD ;
Nistor, C ;
Knutson, C ;
Tsoi, M ;
Erskine, JL .
NATURE MATERIALS, 2005, 4 (10) :741-744
[4]   Magnetostatics of the uniformly polarized torus [J].
Beleggia, Marco ;
De Graef, Marc ;
Millev, Yonko T. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2112) :3581-3604
[5]   Miniaturization of vortex-comprising system using ferromagnetic nanotori [J].
Carvalho-Santos, V. L. ;
Moura-Melo, W. A. ;
Pereira, A. R. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[6]   Domain wall nanoelectronics [J].
Catalan, G. ;
Seidel, J. ;
Ramesh, R. ;
Scott, J. F. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (01) :119-156
[7]   Critical nucleation size of vortex core for domain wall transformation in soft magnetic thin film nanostrips [J].
Choi, Youn-Seok ;
Lee, Jun-Young ;
Yoo, Myoung-Woo ;
Lee, Ki-Suk ;
Guslienko, Konstantin Yu. ;
Kim, Sang-Koog .
PHYSICAL REVIEW B, 2009, 80 (01)
[8]  
Emori S, 2013, NAT MATER, V12, P611, DOI [10.1038/NMAT3675, 10.1038/nmat3675]
[9]   A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag [J].
Fischbacher, Thomas ;
Franchin, Matteo ;
Bordignon, Giuliano ;
Fangohr, Hans .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) :2896-2898
[10]   Magnetization in narrow ribbons: curvature effects [J].
Gaididei, Yuri ;
Goussev, Arseni ;
Kravchuk, Volodymyr P. ;
Pylypovskyi, Oleksandr V. ;
Robbins, J. M. ;
Sheka, Denis D. ;
Slastikov, Valeriy ;
Vasylkevych, Sergiy .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (38)