Dexmedetomidine alleviates lung ischemia-reperfusion injury in rats by activating PI3K/Akt pathway

被引:27
|
作者
Liang, S. [1 ]
Wang, Y. [2 ]
Liu, Y. [2 ]
机构
[1] Hebei Univ, Dept Anesthesiol, Affiliated Hosp, Baoding, Peoples R China
[2] Harbin Med Univ, Dept Anesthesiol, Canc Hosp, Harbin, Heilongjiang, Peoples R China
关键词
Lung ischemia-reperfusion; Dexmedetomidine; PI3K/Akt; Lung injury; ISCHEMIA/REPERFUSION INJURY; MECHANICAL VENTILATION; APOPTOSIS; PROTECTS; INHIBITION; SEDATION; MODEL;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: This research aims to investigate the role and mechanism of PI3K/Akt pathway in the pathological process of lung ischemia-reperfusion injury in dexmedetomidine-treated rats. MATERIALS AND METHODS: Forty-five healthy male Sprague-Dawley rats were divided into three groups: sham operation group, lung ischemia-reperfusion group (IR group) and dexmedetomidine pretreatment group (Dex group). Rats in the sham operation group did not receive other procedures except for opening left chest. The left lung hilar of rats in the IR group was clamped with non-invasive vascular clamp after anesthesia to establish an ischemic model. After 1 hour, the vascular clamp was released and the rats were reperfused for 2 hours. As for rats in the Dex group, 3 mu g/kg of dexmedetomidine (pumping time of 10 min) was pumped through the tail vein before releasing the left hilar clamp. After the experiment, blood samples and lung tissues were collected. Serum levels of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha). IL-10, and IL-1 in rats were examined. Activities of malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) in rat lung tissues were also detected. Besides, the expressions of hypoxia-inducible factor-la (HIF-la), p-Akt, Caspase-3, and Caspase-9 in lung tissues were detected by Western blot. The mRNA expression levels of HIF-1a, p-Akt. Caspase-3, and Caspase-9 in lung tissues were evaluated by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). RESULTS: Lung ischemia-reperfusion markedly increased the levels of IL-6, TNF-alpha, IL-10, and IL-1 in the IR group. In contrast, dexmedetomidine pretreatment decreased the expression levels of IL-6, TNF-alpha, IL-10, and IL-1in the Dex group. Also, the activities of MDA and MPO in lung tissues of rats in the IR group significantly increased after lung ischemia-reperfusion injury, whereas dexmedetomidine pretreatment reversed the elevated activities of MDA and MPO in the Dex group. Furthermore, dexmedetomidine pretreatment also improved the activities of SOD and CAT in rat lung tissues compared with rats with lung ischemia-reperfusion injury. In addition, dexmedetomidine pretreatment increased the expression levels of HIF-l alpha, p-Akt and HIF- in the Dex group when compared to those in the IR group. The mRNA expressions of HIF-1a, p-Akt, Caspase-3, and Caspase-9 in lung tissue of rats was significantly reduced after dexmedetomidine pretreatment. CONCLUSIONS: Rat lung ischemia-reperfusion can induce severe lung injury. Dexmedetomidine treatment can attenuate lung ischemia-reperfusion injury by activating the PI3K/Akt signaling pathway at the transcriptional level.
引用
收藏
页码:370 / 377
页数:8
相关论文
共 50 条
  • [21] Rosmarinic Acid Ameliorates Pulmonary Ischemia/Reperfusion Injury by Activating the PI3K/Akt Signaling Pathway
    Luo, Wenbin
    Tao, Yu
    Chen, Shengnan
    Luo, Hao
    Li, Xiaoping
    Qu, Shuang
    Chen, Ken
    Zeng, Chunyu
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [22] Effects of Hydrogen-rich Water on the PI3K/AKT Signaling Pathway in Rats with Myocardial Ischemia-Reperfusion Injury
    Li, Liangtong
    Li, Xiangzi
    Zhang, Zhe
    Liu, Li
    Liu, Tongtong
    Li, Shaochun
    Liu, Sen
    Zhou, Yujuan
    Liu, Fulin
    CURRENT MOLECULAR MEDICINE, 2020, 20 (05) : 396 - 405
  • [23] PI3K/AKT pathway: A potential therapeutic target in cerebral ischemia-reperfusion injury
    Han, Yiming
    Sun, Yu
    Peng, Shiyu
    Tang, Tingting
    Zhang, Beibei
    Yu, Ruonan
    Sun, Xiaoyan
    Guo, Shanshan
    Ma, Lijuan
    Li, Peng
    Yang, Pengfei
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2025, 998
  • [24] Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats
    Fu, Jian
    Sun, Haibin
    Wei, Haofei
    Dong, Mingjie
    Zhang, Yongzhe
    Xu, Wei
    Fang, Yanwei
    Zhao, Jianhui
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2020, 15 (01)
  • [25] Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats
    Jian Fu
    Haibin Sun
    Haofei Wei
    Mingjie Dong
    Yongzhe Zhang
    Wei Xu
    Yanwei Fang
    Jianhui Zhao
    Journal of Orthopaedic Surgery and Research, 15
  • [26] Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway
    Sun, Yanjun
    Jiang, Chuan
    Jiang, Jun
    Qiu, Lisheng
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2017, 44 (09): : 946 - 953
  • [27] Tamibarotene Improves Hippocampus Injury Induced by Focal Cerebral Ischemia-Reperfusion via Modulating PI3K/Akt Pathway in Rats
    Tian, Xiaocui
    An, Ruidi
    Luo, Yujie
    Li, Minghang
    Xu, Lu
    Dong, Zhi
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2019, 28 (07): : 1832 - 1840
  • [28] Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways
    Wei, Dajun
    Xu, Hongjie
    Gai, Xiaodong
    Jiang, Ying
    ACTA CIRURGICA BRASILEIRA, 2019, 34 (07)
  • [29] Aloperine protects against cerebral ischemia/reperfusion injury via activating the PI3K/AKT signaling pathway in rats
    Li, Zhimin
    Cao, Xing
    Xiao, Ligen
    Zhou, Ruijiao
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (04)
  • [30] β-Arrestin-2 attenuates hepatic ischemia-reperfusion injury by activating PI3K/Akt signaling
    Chen, Xiaolong
    Zhang, Junbin
    Xia, Long
    Wang, Li
    Li, Hui
    Liu, Huilin
    Zhou, Jing
    Feng, Zhiying
    Jin, Hai
    Yang, JianXu
    Yang, Yang
    Wu, Bin
    Zhang, Lei
    Chen, Guihua
    Wang, Genshu
    AGING-US, 2021, 13 (02): : 2251 - 2263