Analytic and Reidemeister torsion for representations in finite type Hilbert modules

被引:43
作者
Burghelea, D [1 ]
Friedlander, L [1 ]
Kappeler, T [1 ]
McDonald, P [1 ]
机构
[1] UNIV ARIZONA,DEPT MATH,TUCSON,AZ 85721
关键词
D O I
10.1007/BF02246786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a closed Riemannian manifold (M, g) we extend the definition of analytic and Reidemeister torsion associated to a unitary representation of pi(1)(M) On a finite dimensional vector space to a representation on a A-Hilbert module W of finite type where A is a finite von Neumann algebra. If (M, W) is of determinant class we prove, generalizing the Cheeger-Miiller theorem, that the analytic and Reidemeister torsion are equal. In particular, this proves the conjecture that for closed Riemannian manifolds with positive Novikov-Shubin invariant, the L(2)-analytic and L(2)-Reidemeister torsions are equal.
引用
收藏
页码:751 / 859
页数:109
相关论文
共 50 条
[21]   MULTIPLE WELLS IN THE SEMI-CLASSICAL LIMIT I [J].
HELFFER, B ;
SJOSTRAND, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (04) :337-408
[22]  
Hormander L., 1985, ANAL LINEAR PARTIAL
[23]  
LEE Y, MAYER VIETORSI TYPE
[24]  
Levendorskii S. Z., 1993, DEGENERATE ELLIPTIC
[25]  
LOTT J, 1992, J DIFFER GEOM, V35, P471
[26]  
LOTT J, L2 TOPOLOGICAL INVAR
[27]   APPROXIMATING L(2)-INVARIANTS BY THEIR FINITE-DIMENSIONAL ANALOGS [J].
LUCK, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (04) :455-481
[28]  
LUCK W, 1993, J DIFFER GEOM, V37, P263
[29]  
LUCK W, L2 TORSION 3 MANIFOL
[30]  
LUCK W, 1991, K-THEORY, V5, P213