Master-slave synchronization of coupled fractional-order chaotic oscillators

被引:0
|
作者
Gao, X [1 ]
Yu, JB
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 610054, Peoples R China
[2] SW Univ Nationalities China, Sch Elect & Informat Engn, Chengdu 610041, Peoples R China
来源
CHINESE PHYSICS | 2005年 / 14卷 / 08期
关键词
fractional order; coupled chaotic oscillators; master-slave synchronization;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of fractional-order systems have attracted increasing attentions in recent years. In this paper, we study the synchronization technique based on the master-slave synchronization scheme and apply it to the synchronization of two coupled nonlinear fractional-order electronic chaotic oscillators. Simulations show that two coupled fractional-order chaotic oscillators can be brought to an exact synchronization with appropriate coupling strength. It is interesting that the synchronization rate of the fractional-order chaotic oscillators is slower than its integer-order counterpart; however, with the increase of system order, the curves of synchronization error can be smoothened, which indicates that the master-slave synchronization of two coupled fractional order oscillators can be smoothened and stabilized.
引用
收藏
页码:1522 / 1525
页数:4
相关论文
共 50 条
  • [31] Synchronization of fractional-order chaotic systems
    Gao, X
    Yu, JB
    2005 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS: VOL 1: COMMUNICATION THEORY AND SYSTEMS, 2005, : 1169 - 1172
  • [32] Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems
    Wang, Chenhui
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [33] Invariant manifolds and nonlinear master-slave synchronization in coupled systems
    Chueshov, Igor
    APPLICABLE ANALYSIS, 2007, 86 (03) : 269 - 286
  • [34] Master-slave synchronization and invariant manifolds for coupled stochastic systems
    Chueshov, Igor
    Schmalfuss, Bjoern
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [35] Master-slave synchronization of pulse-coupled bifurcating neurons
    Torikai, H
    Shimazaki, M
    Saito, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (03): : 740 - 747
  • [36] Master-slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance
    Babu, N. Ramesh
    Aravind, R. Vijay
    Balasubramaniam, P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [37] Master-slave H∞ robust controller design for synchronization of chaotic systems
    Vesely, Vojtech
    Ilka, Adrian
    Korosi, Ladislav
    Ernek, Martin
    MODELING IDENTIFICATION AND CONTROL, 2019, 40 (01) : 41 - 50
  • [38] Nonlinear Filtering Preserves Chaotic Synchronization via Master-Slave System
    Gonzalez-Salas, J. S.
    Campos-Canton, E.
    Ordaz-Salazar, F. C.
    Jimenez-Lopez, E.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [39] Master–slave synchronization of a class of fractional-order Takagi–Sugeno fuzzy neural networks
    Bei Zhang
    Jinsen Zhuang
    Haidong Liu
    Jinde Cao
    Yonghui Xia
    Advances in Difference Equations, 2018
  • [40] Chaotic synchronization for a class of fractional-order chaotic systems
    Zhou Ping
    CHINESE PHYSICS, 2007, 16 (05): : 1263 - 1266