Electron Resonant Interaction With Whistler Waves Around Foreshock Transients and the Bow Shock Behind the Terminator

被引:15
作者
Artemyev, A. V. [1 ,2 ]
Shi, X. [1 ]
Liu, T. Z. [1 ,3 ,4 ]
Zhang, X. -J. [1 ]
Vasko, I. [2 ,5 ]
Angelopoulos, V. [1 ]
机构
[1] Univ CA, Dept Earth Planetary & Space Sci, Los Angeles, CA 90024 USA
[2] Russian Acad Sci, Space Res Inst, Moscow, Russia
[3] Univ Corp Atmospher Res, Cooperat Programs Adv Earth Syst Sci, Boulder, CO USA
[4] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
[5] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
关键词
bow shock; whistler waves; foreshock transients; RADIATION-BELT ELECTRONS; VAN ALLEN PROBES; MODE WAVES; ENERGETIC ELECTRONS; SOLAR-WIND; CYCLOTRON-RESONANCE; DRIFT ACCELERATION; NONLINEAR-THEORY; PLASMA; THEMIS;
D O I
10.1029/2021JA029820
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Investigation of electron energization at (and around) the Earth's bow shock is critical to our understanding of space weather and astrophysical phenomena. The traditional adiabatic mechanisms for such energization compete with transient wave-particle interactions there. One of the most intense wave modes resonating with electrons is the high-frequency whistler mode, which is widely observed at (and around) the Earth's bow shock. Here, we examine these interactions in the context of the strong magnetic field gradients often found near the bow shock and at foreshock transients. Using THEMIS and ARTEMIS wave measurements, we quantify the nonlinear effects of resonant interactions between >= 100 eV electrons and intense coherent whistler waves. Such nonlinear interactions include the electron phase trapping by waves. As a result, the trapped electrons gain an energy up to several hundreds of eV. We estimate the main characteristics of the proposed acceleration mechanism and discuss its applicability to realistic plasma and magnetic field distributions.
引用
收藏
页数:18
相关论文
共 115 条
[1]   Synthetic Empirical Chorus Wave Model From Combined Van Allen Probes and Cluster Statistics [J].
Agapitov, O. V. ;
Mourenas, D. ;
Artemyev, A. V. ;
Mozer, F. S. ;
Hospodarsky, G. ;
Bonnell, J. ;
Krasnoselskikh, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (01) :297-314
[2]   Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt [J].
Agapitov, O. V. ;
Artemyev, A. V. ;
Mourenas, D. ;
Mozer, F. S. ;
Krasnoselskikh, V. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (23) :10140-10149
[3]   Aspects of Nonlinear Wave-Particle Interactions [J].
Albert, Jay M. ;
Tao, Xin ;
Bortnik, Jacob .
DYNAMICS OF THE EARTH'S RADIATION BELTS AND INNER MAGNETOSPHERE, 2012, 199 :255-+
[4]   CYCLOTRON-RESONANCE IN AN INHOMOGENEOUS MAGNETIC-FIELD [J].
ALBERT, JM .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (08) :2744-2750
[5]   Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow Shock [J].
Amano, T. ;
Katou, T. ;
Kitamura, N. ;
Oka, M. ;
Matsumoto, Y. ;
Hoshino, M. ;
Saito, Y. ;
Yokota, S. ;
Giles, B. L. ;
Paterson, W. R. ;
Russell, C. T. ;
Le Contel, O. ;
Ergun, R. E. ;
Lindqvist, P. -A. ;
Turner, D. L. ;
Fennell, J. F. ;
Blake, J. B. .
PHYSICAL REVIEW LETTERS, 2020, 124 (06)
[6]   The Space Physics Environment Data Analysis System (SPEDAS) [J].
Angelopoulos, V. ;
Cruce, P. ;
Drozdov, A. ;
Grimes, E. W. ;
Hatzigeorgiu, N. ;
King, D. A. ;
Larson, D. ;
Lewis, J. W. ;
McTiernan, J. M. ;
Roberts, D. A. ;
Russell, C. L. ;
Hori, T. ;
Kasahara, Y. ;
Kumamoto, A. ;
Matsuoka, A. ;
Miyashita, Y. ;
Miyoshi, Y. ;
Shinohara, I. ;
Teramoto, M. ;
Faden, J. B. ;
Halford, A. J. ;
McCarthy, M. ;
Millan, R. M. ;
Sample, J. G. ;
Smith, D. M. ;
Woodger, L. A. ;
Masson, A. ;
Narock, A. A. ;
Asamura, K. ;
Chang, T. F. ;
Chiang, C. -Y. ;
Kazama, Y. ;
Keika, K. ;
Matsuda, S. ;
Segawa, T. ;
Seki, K. ;
Shoji, M. ;
Tam, S. W. Y. ;
Umemura, N. ;
Wang, B. -J. ;
Wang, S. -Y. ;
Redmon, R. ;
Rodriguez, J. V. ;
Singer, H. J. ;
Vandegriff, J. ;
Abe, S. ;
Nose, M. ;
Shinbori, A. ;
Tanaka, Y. -M. ;
UeNo, S. .
SPACE SCIENCE REVIEWS, 2019, 215 (01)
[7]   The ARTEMIS Mission [J].
Angelopoulos, V. .
SPACE SCIENCE REVIEWS, 2011, 165 (1-4) :3-25
[8]  
Angelopoulos V, 2008, SPACE SCI REV, V141, P5, DOI 10.1007/s11214-008-9336-1
[9]  
[Anonymous], 1966, GEOMAGN AERONOMY+
[10]   Trapping (capture) into resonance and scattering on resonance: Summary of results for space plasma systems [J].
Artemyev, A. V. ;
Neishtadt, A. I. ;
Vainchtein, D. L. ;
Vasiliev, A. A. ;
Vasko, I. Y. ;
Zelenyi, L. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 65 :111-160