Simulation of the primary breakup of a high-viscosity liquid jet by a coaxial annular gas flow

被引:34
|
作者
Mueller, T. [1 ]
Saenger, A. [2 ]
Habisreuther, P. [1 ]
Jakobs, T. [3 ]
Trimis, D. [1 ]
Kolb, T. [2 ,3 ]
Zarzalis, N. [1 ]
机构
[1] Karlsruhe Inst Technol, Engler Bunte Inst, Div Combust Technol, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Engler Bunte Inst, Div Fuel Technol, D-76131 Karlsruhe, Germany
[3] Karlsruhe Inst Technol, Inst Tech Chem, D-76131 Karlsruhe, Germany
关键词
Twin-fluid nozzle; High-viscosity Newtonian Fluid; Primary breakup; Large Eddy simulation; Volume-of-fluid; OpenFOAM; AIR-BLAST ATOMIZATION; LARGE-EDDY SIMULATION; NON-NEWTONIAN LIQUIDS; SURFACE-TENSION; FLUID-FLOW; VOF METHOD; LEVEL SET; ATOMIZERS; TURBULENCE; EQUATIONS;
D O I
10.1016/j.ijmultiphaseflow.2016.09.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The conversion of low-grade fossil and biogenic energy resources (petcoke, biomass) to a synthesis gas in a high pressure entrained flow gasification process opens a wide spectrum for high efficient energy conversion processes. The synthesis gas can be used for production of methane (SNG), liquid fuels (BtL, CtL) or as fuel for operation of a gas turbine in a combined cycle power plant (IGCC). The production of a tar free high quality syngas is a challenging objective especially due to the fact that typical liquid or suspension fuels for entrained flow gasifiers feature viscosities up to 1000 mPas. Fuel droplet conversion at typical entrained flow gasification conditions is characterized by heat up, evaporation and subsequent degradation of the vapour phase. To guarantee a high fuel conversion rate in the gasifier an efficient atomization of the fuel is required. Mainly twin-fluid burner nozzles are used for atomization of those typically high viscous fuels. The present study is focused on the assessment of the accuracy of CFD computations for the primary breakup of high-viscosity liquids using an external mixing twin fluid nozzle. In a first step experiments were performed with a Newtonian glycerol-water-mixture featuring a liquid viscosity of 400 mPas. Jet breakup was investigated using a high speed camera as well as PIV and LDA-System for a detailed investigation of the flow field. In a second step the experimental results serve as reference data to assess the accuracy of CFD computations. Compressible large eddy simulations (LES) were performed to capture the morphology of the primary breakup as well as the important flow field characteristics. A Volume of Fluid (VOF) approach was used to track the unsteady evolution and breakup of the liquid jet. Comparison of experimental and numerical results showed good agreement with respect to breakup frequency, velocity fields and morphology. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:212 / 228
页数:17
相关论文
共 50 条
  • [21] LARGE EDDY SIMULATION OF SINGLE DROPLET AND LIQUID JET PRIMARY BREAKUP USING A COUPLED LEVEL SET/VOLUME OF FLUID METHOD
    Xiao, F.
    Dianat, M.
    McGuirk, J. J.
    ATOMIZATION AND SPRAYS, 2014, 24 (04) : 281 - 302
  • [22] Liquid jet breakup unsteadiness in a coaxial air-blast atomizer
    Kumar, Abhijeet
    Sahu, Srikrishna
    INTERNATIONAL JOURNAL OF SPRAY AND COMBUSTION DYNAMICS, 2018, 10 (03) : 211 - 230
  • [23] Numerical simulation of the gas-liquid interaction of cross liquid jet in supersonic flow
    Li P.-B.
    Wang Z.-G.
    Sun M.-B.
    Wang H.-B.
    1600, China Spaceflight Society (37): : 209 - 215
  • [24] A ROBUST FRONT TRACKING METHOD: VERIFICATION AND APPLICATION TO SIMULATION OF THE PRIMARY BREAKUP OF A LIQUID JET
    Bo, Wurigen
    Liu, Xingtao
    Glimm, James
    Li, Xiaolin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (04) : 1505 - 1524
  • [25] NUMERICAL SIMULATION OF PRIMARY BREAKUP OF ROUND NONTURBULENT LIQUID JETS IN SHEAR-LADEN GASEOUS CROSSFLOW
    Jadidi, Mehdi
    Moghtadernejad, Sara
    Dolatabadi, Ali
    ATOMIZATION AND SPRAYS, 2017, 27 (03) : 227 - 250
  • [26] The Primary Breakup and Atomization Characteristics of Liquid Jet in Crossflow at the Fixed Momentum Ratio and Weber Number
    Shao, Meng
    He, Zhixia
    Wang, Qian
    COMBUSTION SCIENCE AND TECHNOLOGY, 2024,
  • [27] Liquid jet breakup in a subsonic cross airflow: An experimental study of the effect of the gas phase turbulence
    Peters, Joshua
    Birouk, Madjid
    EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW, 2024, 6 (01) : 41 - 58
  • [28] Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow
    Li, Peibo
    Wang, Zhenguo
    Sun, Mingbo
    Wang, Hongbo
    ACTA ASTRONAUTICA, 2017, 134 : 333 - 344
  • [29] Numerical simulation of gas jet in liquid crossflow with high mean jet to crossflow velocity ratio
    Rek, Zlatko
    Gregorc, Jurij
    Bouaifi, Mounir
    Daniel, Claude
    CHEMICAL ENGINEERING SCIENCE, 2017, 172 : 667 - 676
  • [30] Simulation of liquid jet primary breakup in a supersonic crossflow under Adaptive Mesh Refinement framework
    Liu, Nan
    Wang, Zhenguo
    Sun, Mingbo
    Deiterding, Ralf
    Wang, Hongbo
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 91 : 456 - 473