On minimum average stretch spanning trees in polygonal 2-trees

被引:2
|
作者
Narayanaswamy, N. S. [1 ]
Ramakrishna, G. [1 ,2 ]
机构
[1] Indian Inst Technol Madras, Dept Comp Sci & Engn, Madras, Tamil Nadu, India
[2] Indian Inst Informat Technol Sricity, Sricity, Andhra Pradesh, India
关键词
Minimum average stretch spanning trees; Minimum fundamental cycle bases; Polygonal; 2-trees;
D O I
10.1016/j.tcs.2014.11.038
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it minimizes the ratio of sum of the distances in the tree between the end vertices of the graph edges and the number of graph edges. For a polygonal 2-tree on n vertices, we present an algorithm to compute a minimum average stretch spanning tree in 0 (n logn) time. This algorithm also finds a minimum fundamental cycle basis in polygonal 2-trees. We show that there is a unique minimum cycle basis in a polygonal 2-tree and it can be computed in linear time. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 50 条
  • [41] Distributed verification of minimum spanning trees
    Korman, Amos
    Kutten, Shay
    DISTRIBUTED COMPUTING, 2007, 20 (04) : 253 - 266
  • [42] Minimum Spanning Trees in Temporal Graphs
    Huang, Silu
    Fu, Ada Wai-Chee
    Liu, Ruifeng
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 419 - 430
  • [43] Planar bichromatic minimum spanning trees
    Borgelt, Magdalene G.
    van Kreveld, Marc
    Loffler, Maarten
    Luo, Jun
    Merrick, Damian
    Silveira, Rodrigo I.
    Vahedi, Mostafa
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 469 - 478
  • [44] Increasing the weight of minimum spanning trees
    Frederickson, GN
    Solis-Oba, R
    JOURNAL OF ALGORITHMS, 1999, 33 (02) : 244 - 266
  • [45] Minimum spanning trees and types of dissimilarities
    Leclerc, B
    EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (2-3) : 255 - 264
  • [46] Galactic Archaeology and Minimum Spanning Trees
    MacFarlane, Ben A.
    Gibson, Brad K.
    Flynn, Chris M. L.
    MULTI-OBJECT SPECTROSCOPY IN THE NEXT DECADE: BIG QUESTIONS, LARGE SURVEYS, AND WIDE FIELDS, 2016, 507 : 79 - 83
  • [47] Morphology on Graphs and Minimum Spanning Trees
    Meyer, Fernand
    Stawiaski, Jean
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATION TO SIGNAL AND IMAGE PROCESSING, 2009, 5720 : 161 - 170
  • [48] Geometric Minimum Spanning Trees with GEOFILTERKRUSKAL
    Chatterjee, Samidh
    Connor, Michael
    Kumar, Piyush
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2010, 6049 : 486 - 500
  • [49] Finding minimum congestion spanning trees
    Werneck, RFF
    Setubal, JC
    da Conceiçao, AF
    ALGORITHM ENGINEERING, 1999, 1668 : 60 - 71
  • [50] Parametric and kinetic minimum spanning trees
    Agarwal, PK
    Eppstein, D
    Guibas, LJ
    Henzinger, MR
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 596 - 605