Countable abelian group actions and hyperfinite equivalence relations

被引:32
作者
Gao, Su [1 ]
Jackson, Steve [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00222-015-0603-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equivalence relation E on a standard Borel space is hyperfinite if E is the increasing union of countably many Borel equivalence relations where all -equivalence classs are finite. In this article we establish the following theorem: if a countable abelian group acts on a standard Borel space in a Borel manner then the orbit equivalence relation is hyperfinite. The proof uses constructions and analysis of Borel marker sets and regions in the space This technique is also applied to a problem of finding Borel chromatic numbers for invariant Borel subspaces of .
引用
收藏
页码:309 / 383
页数:75
相关论文
共 12 条
[1]  
BECKER H, 1996, LONDON MATH SOC LECT, V232
[2]  
Boykin C., 2006, LECT NOTES LOGIC, V24
[3]  
Connes A., 1981, ERGOD THEOR DYN, V1, P430
[4]   THE STRUCTURE OF HYPERFINITE BOREL EQUIVALENCE-RELATIONS [J].
DOUGHERTY, R ;
JACKSON, S ;
KECHRIS, AS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (01) :193-225
[5]   ERGODIC EQUIVALENCE RELATIONS, COHOMOLOGY, AND VONNEUMANN ALGEBRAS .1. [J].
FELDMAN, J ;
MOORE, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) :289-324
[6]  
Gao S., 2011, PREPRINT
[7]   A coloring property for countable groups [J].
Gao, Su ;
Jackson, Steve ;
Seward, Brandon .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 :579-592
[8]  
Jackson S., 2002, Journal of mathematical logic, V2, P1, DOI 10.1142/S0219061302000138
[9]   Borel chromatic numbers [J].
Kechris, AS ;
Solecki, S ;
Todorcevic, S .
ADVANCES IN MATHEMATICS, 1999, 141 (01) :1-44
[10]   ERGODIC-THEORY OF AMENABLE GROUP-ACTIONS .1. ROHLIN LEMMA [J].
ORNSTEIN, DS ;
WEISS, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 2 (01) :161-164