Detection of target nucleic acids and proteins by amplification of circularizable probes

被引:25
作者
Zhang, DY [1 ]
Liu, B [1 ]
机构
[1] Mt Sinai Sch Med, Mol Pathol Lab, New York, NY 10021 USA
关键词
immuno-RCA; in situ amplification; in situ rolling circle amplification; isothermal amplification; ligation; padlock probe; PCR; SNP;
D O I
10.1586/14737159.3.2.237
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Circularizable oligonucleotide probe (C-probe) is a unique molecule that offers significant advantages over conventional probes. Closed circular structure can be formed through ligation of its ends after hybridizing onto a target and locked on its target due to the helical turns formed between the complementary sequences of the target and the C-probe (padlock probe). Under an isothermal condition, C-probe can be amplified by rolling circle amplification, to generate multimeric single-stranded DNA. This multimeric single-stranded DNA can be further amplified by a ramification mechanism through primer extension and upstream DNA displacement, resulting in an exponential amplification. Usually, an unbiased product is generated by either rolling circle amplification or ramification mechanism due to the generic primers of C-probe and is localized on targets. These advantages make C-probe amplification very useful for research and molecular diagnosis, especially in the areas where other techniques are not adequately helpful. The development of C-probe-based technologies iniates a new future for molecular diagnostics. The applications of C-probe, rolling circle amplification, ramification mechanism, in situ detection, microarray, immunoassay, single nucleotide polymorphism and whole genome amplification are discussed.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 41 条
[1]  
Anthony R M, 2001, Expert Rev Mol Diagn, V1, P30, DOI 10.1586/14737159.1.1.30
[2]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[3]   DNA-SEQUENCE AND EXPRESSION OF THE B95-8 EPSTEIN-BARR VIRUS GENOME [J].
BAER, R ;
BANKIER, AT ;
BIGGIN, MD ;
DEININGER, PL ;
FARRELL, PJ ;
GIBSON, TJ ;
HATFULL, G ;
HUDSON, GS ;
SATCHWELL, SC ;
SEGUIN, C ;
TUFFNELL, PS ;
BARRELL, BG .
NATURE, 1984, 310 (5974) :207-211
[4]   Signal amplification of padlock probes by rolling circle replication [J].
Banér, J ;
Nilsson, M ;
Mendel-Hartvig, M ;
Landegren, U .
NUCLEIC ACIDS RESEARCH, 1998, 26 (22) :5073-5078
[5]   Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells [J].
Christian, AT ;
Pattee, MS ;
Attix, CM ;
Reed, BE ;
Sorensen, KJ ;
Tucker, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14238-14243
[6]   Comprehensive human genome amplification using multiple displacement amplification [J].
Dean, FB ;
Hosono, S ;
Fang, LH ;
Wu, XH ;
Faruqi, AF ;
Bray-Ward, P ;
Sun, ZY ;
Zong, QL ;
Du, YF ;
Du, J ;
Driscoll, M ;
Song, WM ;
Kingsmore, SF ;
Egholm, M ;
Lasken, RS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5261-5266
[7]   High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification [J].
Faruqi F.A. ;
Hosono S. ;
Driscoll M.D. ;
Dean F.B. ;
Alsmadi O. ;
Bandaru R. ;
Kumar G. ;
Grimwade B. ;
Zong Q. ;
Sun Z. ;
Du Y. ;
Kingsmore S. ;
Knott T. ;
Lasken R.S. .
BMC Genomics, 2 (1)
[8]   ROLLING REPLICATION OF SHORT DNA CIRCLES [J].
FIRE, A ;
XU, SQ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4641-4645
[9]   Universal DNA microarray method for multiplex detection of low abundance point mutations [J].
Gerry, NP ;
Witowski, NE ;
Day, J ;
Hammer, RP ;
Barany, G ;
Barany, F .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (02) :251-262
[10]   Rolling circle amplification - A new approach to increase sensitivity for immunohistochemistry and flow cytometry [J].
Gusev, Y ;
Sparkowski, J ;
Raghunathan, A ;
Ferguson, H ;
Montano, J ;
Bogdan, N ;
Schweitzer, B ;
Wiltshire, S ;
Kingsmore, SF ;
Maltzman, W ;
Wheeler, V .
AMERICAN JOURNAL OF PATHOLOGY, 2001, 159 (01) :63-69