Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equations of fourth order in dimensions d ≥ 9

被引:58
作者
Miao, Changxing [2 ]
Xu, Guixiang [2 ]
Zhao, Lifeng [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Defocusing; Energy-critical; Fourth order Schrodinger equations; Global well-posedness; Scattering; BLOW-UP;
D O I
10.1016/j.jde.2011.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the defocusing energy-critical nonlinear Schrodinger equation of fourth order iu(t) + Delta(2)u = -vertical bar u vertical bar(8/d-4)u. We prove that any finite energy solution is global and scatters both forward and backward in time in dimensions d >= 9. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3381 / 3402
页数:22
相关论文
共 50 条
  • [41] GLOBAL WELL-POSEDNESS, SCATTERING AND BLOW-UP FOR THE ENERGY-CRITICAL, FOCUSING HARTREE EQUATION IN THE RADIAL CASE
    Miao, Changxing
    Xu, Guixiang
    Zhao, Lifeng
    COLLOQUIUM MATHEMATICUM, 2009, 114 (02) : 213 - 236
  • [42] Global Well-Posedness and Scattering for the Defocusing H~s-Critical NLS
    Jian XIE
    Daoyuan FANG
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (06) : 801 - 842
  • [43] Energy critical Schrodinger equation with weighted exponential nonlinearity: Local and global well-posedness
    Bensouilah, Abdelwahab
    Draoui, Dhouha
    Majdoub, Mohamed
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (04) : 599 - 621
  • [44] GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING (H)over dot1/2-CRITICAL NONLINEAR SCHRODINGER EQUATION IN R2
    Yu, Xueying
    ANALYSIS & PDE, 2021, 14 (07): : 2225 - 2268
  • [45] GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE FOCUSING NONLINEAR SCHRODINGER EQUATION IN THE NONRADIAL CASE
    Han, Pigong
    OPUSCULA MATHEMATICA, 2012, 32 (03) : 487 - 504
  • [46] SHARP WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR THE FOURTH ORDER NONLINEAR SCHRODINGER EQUATION
    Ren, Yuanyuan
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (02) : 487 - 504
  • [47] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [48] Global well-posedness, scattering, and blowup for nonlinear coupled Schrodinger equations in R3
    Xu, Yushun
    APPLICABLE ANALYSIS, 2016, 95 (03) : 483 - 502
  • [49] Global well-posedness and polynomial bounds for the defocusing L2-critical nonlinear Schrodinger equation in R
    De Silva, Daniela
    Pavlovic, Natasa
    Staffilani, Gigliola
    Tzirakis, Nikolaos
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (08) : 1395 - 1429
  • [50] Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations
    Lian, Wei
    Radulescu, Vicentiu D.
    Xu, Runzhang
    Yang, Yanbing
    Zhao, Nan
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) : 589 - 611