Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equations of fourth order in dimensions d ≥ 9

被引:58
|
作者
Miao, Changxing [2 ]
Xu, Guixiang [2 ]
Zhao, Lifeng [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Defocusing; Energy-critical; Fourth order Schrodinger equations; Global well-posedness; Scattering; BLOW-UP;
D O I
10.1016/j.jde.2011.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the defocusing energy-critical nonlinear Schrodinger equation of fourth order iu(t) + Delta(2)u = -vertical bar u vertical bar(8/d-4)u. We prove that any finite energy solution is global and scatters both forward and backward in time in dimensions d >= 9. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3381 / 3402
页数:22
相关论文
共 50 条
  • [21] Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3
    Oh, Tadahiro
    Pocovnicu, Oana
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (03): : 342 - 366
  • [22] GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE DEFOCUSING QUINTIC NLS IN THREE DIMENSIONS
    Killip, Rowan
    Visan, Monica
    ANALYSIS & PDE, 2012, 5 (04): : 855 - 885
  • [23] On the global well-posedness of focusing energy-critical inhomogeneous NLS
    Yonggeun Cho
    Seokchang Hong
    Kiyeon Lee
    Journal of Evolution Equations, 2020, 20 : 1349 - 1380
  • [24] Global well-posedness for the defocusing, cubic nonlinear Schrodinger equation with initial data in a critical space
    Dodson, Benjamin
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (04) : 1087 - 1100
  • [25] On the global well-posedness of focusing energy-critical inhomogeneous NLSy
    Cho, Yonggeun
    Hong, Seokchang
    Lee, Kiyeon
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1349 - 1380
  • [26] Global well-posedness and scattering of 3D defocusing, cubic Schrodinger equation
    Shen, Jia
    Wu, Yifei
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (06)
  • [27] GLOBAL WELL-POSEDNESS OF CRITICAL NONLINEAR SCHRODINGER EQUATIONS BELOW L2
    Cho, Yonggeun
    Hwang, Gyeongha
    Ozawa, Tohru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1389 - 1405
  • [28] Global well-posedness and scattering for the nonstandard defocusing Beam equation
    Wang, Dawei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 : 8 - 23
  • [29] Global well-posedness for nonlinear fourth-order Schrödinger equations
    Xiuyan Peng
    Yi Niu
    Jie Liu
    Mingyou Zhang
    Jihong Shen
    Boundary Value Problems, 2016
  • [30] GLOBAL WELL-POSEDNESS AND SCATTERING FOR MASS-CRITICAL, DEFOCUSING, INFINITE DIMENSIONAL VECTOR-VALUED RESONANT NONLINEAR SCHRODINGER SYSTEM
    Yang, Kailong
    Zhao, Lifeng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) : 1593 - 1655