Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equations of fourth order in dimensions d ≥ 9

被引:60
作者
Miao, Changxing [2 ]
Xu, Guixiang [2 ]
Zhao, Lifeng [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Defocusing; Energy-critical; Fourth order Schrodinger equations; Global well-posedness; Scattering; BLOW-UP;
D O I
10.1016/j.jde.2011.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the defocusing energy-critical nonlinear Schrodinger equation of fourth order iu(t) + Delta(2)u = -vertical bar u vertical bar(8/d-4)u. We prove that any finite energy solution is global and scatters both forward and backward in time in dimensions d >= 9. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3381 / 3402
页数:22
相关论文
共 24 条
[1]  
[Anonymous], 1993, PRINCETON MATH SER
[2]  
[Anonymous], 2006, CBMS REGIONAL C SERI, DOI DOI 10.1090/EBMS/106
[3]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[4]   Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation [J].
Begout, Pascal ;
Vargas, Ana .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5257-5282
[5]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[6]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[7]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[8]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[9]   On nonlinear Schrodinger equations [J].
Grillakis, MG .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (9-10) :1827-1844
[10]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675