Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equations of fourth order in dimensions d ≥ 9

被引:58
|
作者
Miao, Changxing [2 ]
Xu, Guixiang [2 ]
Zhao, Lifeng [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Defocusing; Energy-critical; Fourth order Schrodinger equations; Global well-posedness; Scattering; BLOW-UP;
D O I
10.1016/j.jde.2011.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the defocusing energy-critical nonlinear Schrodinger equation of fourth order iu(t) + Delta(2)u = -vertical bar u vertical bar(8/d-4)u. We prove that any finite energy solution is global and scatters both forward and backward in time in dimensions d >= 9. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3381 / 3402
页数:22
相关论文
共 50 条
  • [1] Global well-posedness and scattering for the focusing energy-critical nonlinear Schrodinger equations of fourth order in the radial case
    Miao, Changxing
    Xu, Guixiang
    Zhao, Lifeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (09) : 3715 - 3749
  • [2] ON THE GLOBAL WELL-POSEDNESS OF ENERGY-CRITICAL SCHRODINGER EQUATIONS IN CURVED SPACES
    Ionescu, Alexandru D.
    Pausader, Benoit
    Staffilani, Gigliola
    ANALYSIS & PDE, 2012, 5 (04): : 705 - 746
  • [3] Global well-posedness of the energy-critical stochastic nonlinear wave equations
    Brun, Enguerrand
    Li, Guopeng
    Liu, Ruoyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 397 : 316 - 348
  • [4] Global Well-Posedness of the Energy-Critical Defocusing NLS on
    Ionescu, Alexandru D.
    Pausader, Benoit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (03) : 781 - 831
  • [5] Global well-posedness for nonlinear fourth-order Schrodinger equations
    Peng, Xiuyan
    Niu, Yi
    Liu, Jie
    Zhang, Mingyou
    Shen, Jihong
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 8
  • [6] Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data
    Miao, Changxing
    Xu, Guixiang
    Zhao, Lifeng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 605 - 627
  • [7] Global well-posedness for the energy-critical focusing nonlinear Schrodinger equation on T4
    Yue, Haitian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 : 754 - 804
  • [8] Global Well-posedness and Scattering for the Defocusing Cubic nonlinear Schrodinger equation in Four Dimensions
    Visan, Monica
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (05) : 1037 - 1067
  • [9] Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in 1+n
    Miao, Changxing
    Xu, Guixiang
    Zhao, Lifeng
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (05) : 729 - 776
  • [10] Global Well-Posedness of the 4-D Energy-Critical Stochastic Nonlinear Schrodinger Equations with Non-Vanishing Boundary Condition
    Cheung, Kelvin
    Li, Guopeng
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2022, 65 (03): : 287 - 309