Solvent Accessible Surface Area-Based Hot-Spot Detection Methods for Protein-Protein and Protein-Nucleic Acid Interfaces

被引:29
|
作者
Munteanu, Cristian R. [1 ]
Pimenta, Antonio C. [2 ]
Fernandez-Lozano, Carlos [1 ]
Melo, Andre [2 ]
Cordeiro, Maria N. D. S. [2 ]
Moreira, Irina S. [2 ,3 ]
机构
[1] Univ A Coruna, Fac Comp Sci, Informat & Commun Technol Dept, La Coruna 15071, Spain
[2] Univ Porto, Dept Quim & Bioquim, Fac Ciencias, REQUIMTE, P-4169007 Oporto, Portugal
[3] Univ Coimbra, FMUC, CNC Ctr Neurosci & Cell Biol, P-3004517 Coimbra, Portugal
关键词
ALANINE SCANNING MUTAGENESIS; O-RING THEORY; THERMODYNAMIC DATABASES; FREE-ENERGIES; BINDING; PREDICTION; COMPLEX; RESIDUES; SEQUENCE; SERVER;
D O I
10.1021/ci500760m
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Due to the importance of hot-spots (HS) detection and the efficiency of computational methodologies, several HS detecting approaches have been developed. The current paper presents new models to predict HS for protein-protein and protein-nucleic acid interactions with better statistics compared with the ones currently reported in literature. These models are based on solvent accessible surface area (SASA) and genetic conservation features subjected to simple Bayes networks (protein-protein systems) and a more complex multi-objective genetic algorithm-support vector machine algorithms (protein-nucleic acid systems) The best models for these interactions have been implemented in two free Web tools.
引用
收藏
页码:1077 / 1086
页数:10
相关论文
共 27 条
  • [21] Obtaining protein solvent accessible surface area when structural data is unavailable using osmotic pressure
    McBride, Devin W.
    Rodgers, V. G. J.
    AICHE JOURNAL, 2012, 58 (04) : 1012 - 1017
  • [22] Improving Predictions of Protein-Protein Interfaces by Combining Amino Acid-Specific Classifiers Based on Structural and Physicochemical Descriptors with Their Weighted Neighbor Averages
    de Moraes, Fabio R.
    Neshich, Izabella A. P.
    Mazoni, Ivan
    Yano, Inacio H.
    Pereira, Jose G. C.
    Salim, Jose A.
    Jardine, Jose G.
    Neshich, Goran
    PLOS ONE, 2014, 9 (01):
  • [23] HISNAPI: a bioinformatic tool for dynamic hot spot analysis in nucleic acid-protein interface with a case study
    Mei, Long-Can
    Wang, Yu-Liang
    Wu, Feng-Xu
    Wang, Fan
    Hao, Ge-Fei
    Yang, Guang-Fu
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [24] SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
    Faraggi, Eshel
    Zhang, Tuo
    Yang, Yuedong
    Kurgan, Lukasz
    Zhou, Yaoqi
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (03) : 259 - 267
  • [25] SCOWLP update: 3D classification of protein-protein, -peptide, -saccharide and -nucleic acid interactions, and structure-based binding inferences across folds
    Teyra, Joan
    Samsonov, Sergey A.
    Schreiber, Sven
    Pisabarro, M. Teresa
    BMC BIOINFORMATICS, 2011, 12
  • [26] Versatile DNAzyme-Based Amplified Biosensing Platforms for Nucleic Acid, Protein, and Enzyme Activity Detection
    Zhao, Xu-Hua
    Gong, Liang
    Zhang, Xiao-Bing
    Yang, Bin
    Fu, Ting
    Hu, Rong
    Tan, Weihong
    Yu, Ruqin
    ANALYTICAL CHEMISTRY, 2013, 85 (07) : 3614 - 3620
  • [27] SERS Assay for Copper(II) Ions Based on Dual Hot-Spot Model Coupling with MarR Protein: New Cu2+-Specific Biorecognition Element
    Wang, Yulong
    Su, Zhenhe
    Wang, Limin
    Dong, Jinbo
    Xue, Juanjuan
    Yu, Jiao
    Wang, Yuan
    Hua, Xiude
    Wang, Minghua
    Zhang, Cunzheng
    Liu, Fengquan
    ANALYTICAL CHEMISTRY, 2017, 89 (12) : 6392 - 6398