Solvent Accessible Surface Area-Based Hot-Spot Detection Methods for Protein-Protein and Protein-Nucleic Acid Interfaces

被引:29
|
作者
Munteanu, Cristian R. [1 ]
Pimenta, Antonio C. [2 ]
Fernandez-Lozano, Carlos [1 ]
Melo, Andre [2 ]
Cordeiro, Maria N. D. S. [2 ]
Moreira, Irina S. [2 ,3 ]
机构
[1] Univ A Coruna, Fac Comp Sci, Informat & Commun Technol Dept, La Coruna 15071, Spain
[2] Univ Porto, Dept Quim & Bioquim, Fac Ciencias, REQUIMTE, P-4169007 Oporto, Portugal
[3] Univ Coimbra, FMUC, CNC Ctr Neurosci & Cell Biol, P-3004517 Coimbra, Portugal
关键词
ALANINE SCANNING MUTAGENESIS; O-RING THEORY; THERMODYNAMIC DATABASES; FREE-ENERGIES; BINDING; PREDICTION; COMPLEX; RESIDUES; SEQUENCE; SERVER;
D O I
10.1021/ci500760m
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Due to the importance of hot-spots (HS) detection and the efficiency of computational methodologies, several HS detecting approaches have been developed. The current paper presents new models to predict HS for protein-protein and protein-nucleic acid interactions with better statistics compared with the ones currently reported in literature. These models are based on solvent accessible surface area (SASA) and genetic conservation features subjected to simple Bayes networks (protein-protein systems) and a more complex multi-objective genetic algorithm-support vector machine algorithms (protein-nucleic acid systems) The best models for these interactions have been implemented in two free Web tools.
引用
收藏
页码:1077 / 1086
页数:10
相关论文
共 27 条
  • [1] Solvent-accessible surface area: How well can be applied to hot-spot detection?
    Martins, Joao M.
    Ramos, Rui M.
    Pimenta, Antonio C.
    Moreira, Irina S.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (03) : 479 - 490
  • [2] Protein-protein Docking and Hot-spot Prediction for Drug Discovery
    Grosdidier, Solene
    Fernandez-Recio, Juan
    CURRENT PHARMACEUTICAL DESIGN, 2012, 18 (30) : 4607 - 4618
  • [3] Hot-spot analysis for drug discovery targeting protein-protein interactions
    Rosell, Mireia
    Fernandez-Recio, Juan
    EXPERT OPINION ON DRUG DISCOVERY, 2018, 13 (04) : 327 - 338
  • [4] Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods
    Lise, Stefano
    Archambeau, Cedric
    Pontil, Massimiliano
    Jones, David T.
    BMC BIOINFORMATICS, 2009, 10 : 365
  • [5] Analysis of single amino acid variations in singlet hot spots of protein-protein interfaces
    Ozdemir, E. Sila
    Gursoy, Attila
    Keskin, Ozlem
    BIOINFORMATICS, 2018, 34 (17) : 795 - 801
  • [6] Densest subgraph-based methods for protein-protein interaction hot spot prediction
    Li, Ruiming
    Lee, Jung-Yu
    Yang, Jinn-Moon
    Akutsu, Tatsuya
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [7] Protein-protein and protein-nucleic acid binding site prediction via interpretable hierarchical geometric deep learning
    Zhang, Shizhuo
    Han, Jiyun
    Liu, Juntao
    GIGASCIENCE, 2024, 13
  • [8] Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes
    Gromiha, M. Michael
    Saranya, N.
    Selvaraj, S.
    Jayaram, B.
    Fukui, Kazuhiko
    PROTEOME SCIENCE, 2011, 9
  • [9] Predictions of Hot Spot Residues at Protein-Protein Interfaces Using Support Vector Machines
    Lise, Stefano
    Buchan, Daniel
    Pontil, Massimiliano
    Jones, David T.
    PLOS ONE, 2011, 6 (02):
  • [10] Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme
    Jakobi, Stephan
    Tran Xuan Phong Nguyen
    Debaene, Francois
    Metz, Alexander
    Sanglier-Cianferani, Sarah
    Reuter, Klaus
    Klebe, Gerhard
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (10) : 2713 - 2732