An implementation of steepest-descent augmentation for linear programs

被引:8
作者
Borgwardt, Steffen [1 ]
Viss, Charles [1 ]
机构
[1] Univ Colorado Denver, Denver, CO 80204 USA
关键词
Circuits; Linear programming; Polyhedra;
D O I
10.1016/j.orl.2020.04.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Generalizing the simplex method, circuit augmentation schemes for linear programs follow circuit directions through the interior of the underlying polyhedron. Steepest-descent augmentation is especially promising, but an implementation of the iterative scheme is a significant challenge. We work towards a viable implementation through a model in which a single linear program is updated dynamically to remain in memory throughout. Computational experiments exhibit dramatic improvements over a naive approach and reveal insight into the next steps required for large-scale computations. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 328
页数:6
相关论文
共 20 条
[11]   On the diameter of partition polytopes and vertex-disjoint cycle cover [J].
Borgwardt, Steffen .
MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) :1-20
[12]   ON AUGMENTATION ALGORITHMS FOR LINEAR AND INTEGER-LINEAR PROGRAMMING: FROM EDMONDS-KARP TO BLAND AND BEYOND [J].
De Loera, Jesus A. ;
Hemmecke, Raymond ;
Lee, Jon .
SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) :2494-2511
[13]   Vector Space Decomposition for Solving Large-Scale Linear Programs [J].
Gauthier, Jean Bertrand ;
Desrosiers, Jacques ;
Luebbecke, Marco E. .
OPERATIONS RESEARCH, 2018, 66 (05) :1376-1389
[14]  
GRAVER JE, 1975, MATH PROGRAM, V9, P207, DOI 10.1007/BF01681344
[15]  
Gurobi Optimization LLC., 2021, Gurobi Optimizer Reference Manual
[16]   n-Fold integer programming in cubic time [J].
Hemmecke, Raymond ;
Onn, Shmuel ;
Romanchuk, Lyubov .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :325-341
[17]   A polynomial oracle-time algorithm for convex integer minimization [J].
Hemmecke, Raymond ;
Onn, Shmuel ;
Weismantel, Robert .
MATHEMATICAL PROGRAMMING, 2011, 126 (01) :97-117
[18]   ON THE CIRCUIT DIAMETER OF SOME COMBINATORIAL POLYTOPES [J].
Kafer, Sean ;
Pashkovich, Kanstantsin ;
Sanita, Laura .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) :1-25
[19]   The final Netlib-LP results [J].
Koch, T .
OPERATIONS RESEARCH LETTERS, 2004, 32 (02) :138-142
[20]  
Rockafellar R.T., 1969, Combinatorial Mathematics and its Applications, P104