An implementation of steepest-descent augmentation for linear programs

被引:8
作者
Borgwardt, Steffen [1 ]
Viss, Charles [1 ]
机构
[1] Univ Colorado Denver, Denver, CO 80204 USA
关键词
Circuits; Linear programming; Polyhedra;
D O I
10.1016/j.orl.2020.04.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Generalizing the simplex method, circuit augmentation schemes for linear programs follow circuit directions through the interior of the underlying polyhedron. Steepest-descent augmentation is especially promising, but an implementation of the iterative scheme is a significant challenge. We work towards a viable implementation through a model in which a single linear program is updated dynamically to remain in memory throughout. Computational experiments exhibit dramatic improvements over a naive approach and reveal insight into the next steps required for large-scale computations. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 328
页数:6
相关论文
共 20 条
[1]  
[Anonymous], DISCRETE OPTIM
[2]  
[Anonymous], NETL COLL LP PROBL M
[3]  
[Anonymous], 190912863 ARXIV
[4]   ON THE COMPUTATIONAL BEHAVIOR OF A POLYNOMIAL-TIME NETWORK FLOW ALGORITHM [J].
BLAND, RG ;
JENSEN, DL .
MATHEMATICAL PROGRAMMING, 1992, 54 (01) :1-39
[5]   The hierarchy of circuit diameters and transportation polytopes [J].
Borgwardt, S. ;
de Loera, J. A. ;
Finhold, E. ;
Miller, J. .
DISCRETE APPLIED MATHEMATICS, 2018, 240 :8-24
[6]   Edges versus circuits: a hierarchy of diameters in polyhedra [J].
Borgwardt, S. ;
De Loera, J. A. ;
Finhold, E. .
ADVANCES IN GEOMETRY, 2016, 16 (04) :511-530
[7]  
Borgwardt S., 2019, Discrete Applied Mathematics
[8]   Good Clusterings Have Large Volume [J].
Borgwardt, Steffen ;
Happach, Felix .
OPERATIONS RESEARCH, 2019, 67 (01) :215-231
[9]   Quadratic diameter bounds for dual network flow polyhedra [J].
Borgwardt, Steffen ;
Finhold, Elisabeth ;
Hemmecke, Raymond .
MATHEMATICAL PROGRAMMING, 2016, 159 (1-2) :237-251
[10]   ON THE CIRCUIT DIAMETER OF DUAL TRANSPORTATION POLYHEDRA [J].
Borgwardt, Steffen ;
Finhold, Elisabeth ;
Hemmecke, Raymond .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) :113-121