Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants

被引:88
|
作者
Li, Peiling [1 ,2 ]
Song, Aiping [1 ]
Gao, Chunyan [1 ]
Wang, Linxiao [1 ]
Wang, Yinjie [1 ]
Sun, Jing [1 ]
Jiang, Jiafu [1 ]
Chen, Fadi [1 ,2 ]
Chen, Sumei [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Hort, Nanjing 210095, Jiangsu, Peoples R China
[2] Jiangsu Prov Engn Lab Modern Facil Agr Technol &, Nanjing 210095, Jiangsu, Peoples R China
关键词
Chrysanthemum morifolium; Salinity stress; WRKY transcription factor; TRANSCRIPTION FACTOR; BINDING PROTEIN; CAPSICUM-ANNUUM; DNA-BINDING; RESISTANCE; EXPRESSION; SALINITY; ENCODES; OVEREXPRESSION; RESPONSES;
D O I
10.1007/s00299-015-1793-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
CmWRKY17 was induced by salinity in chrysanthemum, and it might negatively regulate salt stress in transgenic plants as a transcriptional repressor. WRKY transcription factors play roles as positive or negative regulators in response to various stresses in plants. In this study, CmWRKY17 was isolated from chrysanthemum (Chrysanthemum morifolium). The gene encodes a 227-amino acid protein and belongs to the group II WRKY family, but has an atypical WRKY domain with the sequence WKKYGEK. Our data indicated that CmWRKY17 was localized to the nucleus in onion epidermal cells. CmWRKY17 showed no transcriptional activation in yeast; furthermore, luminescence assay clearly suggested that CmWRKY17 functions as a transcriptional repressor. DNA-binding assay showed that CmWRKY17 can bind to W-box. The expression of CmWRKY17 was induced by salinity in chrysanthemum, and a higher expression level was observed in the stem and leaf compared with that in the root, disk florets, and ray florets. Overexpression of CmWRKY17 in chrysanthemum and Arabidopsis increased the sensitivity to salinity stress. The activities of superoxide dismutase and peroxidase and proline content in the leaf were significantly lower in transgenic chrysanthemum than those in the wild type under salinity stress, whereas electrical conductivity was increased in transgenic plants. Expression of the stress-related genes AtRD29, AtDREB2B, AtSOS1, AtSOS2, AtSOS3, and AtNHX1 was reduced in the CmWRKY17 transgenic Arabidopsis compared with that in the wild-type Col-0. Collectively, these data suggest that CmWRKY17 may increase the salinity sensitivity in plants as a transcriptional repressor.
引用
收藏
页码:1365 / 1378
页数:14
相关论文
共 50 条
  • [41] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [42] Bermudagrass CdWRKY50 gene negatively regulates plants' response to salt stress
    Huang, Xuebing
    Amee, Maurice
    Chen, Liang
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 188
  • [43] An Arabidopsis Mitochondrial Uncoupling Protein Confers Tolerance to Drought and Salt Stress in Transgenic Tobacco Plants
    Begcy, Kevin
    Mariano, Eduardo D.
    Mattiello, Lucia
    Nunes, Alessandra V.
    Mazzafera, Paulo
    Maia, Ivan G.
    Menossi, Marcelo
    PLOS ONE, 2011, 6 (08):
  • [44] A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis
    Chien, Pei-Shan
    Nam, Hong Gil
    Chen, Yet-Ran
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (17) : 5301 - 5313
  • [45] TaNBR1, a Novel Wheat NBR1-like Domain Gene Negatively Regulates Drought Stress Tolerance in Transgenic Arabidopsis
    Chen, Liuping
    Lv, Qian
    Yang, Weibing
    Yang, Hui
    Chen, Qiaoyan
    Wang, Bingxin
    Lei, Yanhong
    Xie, Yanzhou
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [46] A Brachypodium distachyon MAPKK Gene BdMKK6.2 Negatively Regulates Drought Stress Tolerance in Transgenic Tobacco Plants
    Sun, Jiutong
    Zhou, Run
    Li, Yaping
    Hu, Wei
    Qiu, Ding
    Wang, Xiatian
    Wang, Qiong
    Feng, Zhijuan
    Wang, Lianzhe
    Zhou, Yi
    He, Guangyuan
    Yang, Guangxiao
    JOURNAL OF PLANT GROWTH REGULATION, 2016, 35 (01) : 121 - 134
  • [47] The Wheat Gene TaVQ14 Confers Salt and Drought Tolerance in Transgenic Arabidopsis thaliana Plants
    Cheng, Xinran
    Yao, Hui
    Cheng, Zuming
    Tian, Bingbing
    Gao, Chang
    Gao, Wei
    Yan, Shengnan
    Cao, Jiajia
    Pan, Xu
    Lu, Jie
    Ma, Chuanxi
    Chang, Cheng
    Zhang, Haiping
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [48] Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana
    Liu, Wei
    Liang, Xiaoqi
    Cai, Weijia
    Wang, Hao
    Liu, Xu
    Cheng, Longfei
    Song, Penghui
    Luo, Guijie
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [49] Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants
    Niu, Can-Fang
    Wei, Wei
    Zhou, Qi-Yun
    Tian, Ai-Guo
    Hao, Yu-Jun
    Zhang, Wan-Ke
    Ma, Biao
    Lin, Qing
    Zhang, Zheng-Bin
    Zhang, Jin-Song
    Chen, Shou-Yi
    PLANT CELL AND ENVIRONMENT, 2012, 35 (06) : 1156 - 1170
  • [50] A wheat gene TaSAP17-D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic Arabidopsis
    Xu Qiao-fang
    Mao Xin-guo
    Wang Yi-xue
    Wang Jing-yi
    Xi Ya-jun
    Jing Rui-lian
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (03) : 507 - 516