Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants

被引:88
|
作者
Li, Peiling [1 ,2 ]
Song, Aiping [1 ]
Gao, Chunyan [1 ]
Wang, Linxiao [1 ]
Wang, Yinjie [1 ]
Sun, Jing [1 ]
Jiang, Jiafu [1 ]
Chen, Fadi [1 ,2 ]
Chen, Sumei [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Hort, Nanjing 210095, Jiangsu, Peoples R China
[2] Jiangsu Prov Engn Lab Modern Facil Agr Technol &, Nanjing 210095, Jiangsu, Peoples R China
关键词
Chrysanthemum morifolium; Salinity stress; WRKY transcription factor; TRANSCRIPTION FACTOR; BINDING PROTEIN; CAPSICUM-ANNUUM; DNA-BINDING; RESISTANCE; EXPRESSION; SALINITY; ENCODES; OVEREXPRESSION; RESPONSES;
D O I
10.1007/s00299-015-1793-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
CmWRKY17 was induced by salinity in chrysanthemum, and it might negatively regulate salt stress in transgenic plants as a transcriptional repressor. WRKY transcription factors play roles as positive or negative regulators in response to various stresses in plants. In this study, CmWRKY17 was isolated from chrysanthemum (Chrysanthemum morifolium). The gene encodes a 227-amino acid protein and belongs to the group II WRKY family, but has an atypical WRKY domain with the sequence WKKYGEK. Our data indicated that CmWRKY17 was localized to the nucleus in onion epidermal cells. CmWRKY17 showed no transcriptional activation in yeast; furthermore, luminescence assay clearly suggested that CmWRKY17 functions as a transcriptional repressor. DNA-binding assay showed that CmWRKY17 can bind to W-box. The expression of CmWRKY17 was induced by salinity in chrysanthemum, and a higher expression level was observed in the stem and leaf compared with that in the root, disk florets, and ray florets. Overexpression of CmWRKY17 in chrysanthemum and Arabidopsis increased the sensitivity to salinity stress. The activities of superoxide dismutase and peroxidase and proline content in the leaf were significantly lower in transgenic chrysanthemum than those in the wild type under salinity stress, whereas electrical conductivity was increased in transgenic plants. Expression of the stress-related genes AtRD29, AtDREB2B, AtSOS1, AtSOS2, AtSOS3, and AtNHX1 was reduced in the CmWRKY17 transgenic Arabidopsis compared with that in the wild-type Col-0. Collectively, these data suggest that CmWRKY17 may increase the salinity sensitivity in plants as a transcriptional repressor.
引用
收藏
页码:1365 / 1378
页数:14
相关论文
共 50 条
  • [21] Peanut NAC Transcription Factor AhNAPa Negatively Regulates Salt Tolerance in Transgenic Arabidopsis
    Yuan, Cuiling
    Miao, Haocui
    Sun, Quanxi
    Shan, Shihua
    AGRONOMY-BASEL, 2024, 14 (07):
  • [22] Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress
    Liu, Qing-Lin
    Zhong, Ming
    Li, Shuang
    Pan, Yuan-Zhi
    Jiang, Bei-Bei
    Jia, Yin
    Zhang, Hai-Qing
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 69 : 27 - 33
  • [23] A Cloned Gene HuBADH from Hylocereus undatus Enhanced Salt Stress Tolerance in Transgenic Arabidopsis thaliana Plants
    Qu, Yujie
    Bian, Zhan
    Teixeira da Silva, Jaime A.
    Nong, Quandong
    Qu, Wenran
    Ma, Guohua
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (04):
  • [24] A new CIPK gene CmCIPK8 enhances salt tolerance in transgenic chrysanthemum
    Ding, Xiao
    Liu, Bowen
    Liu, Hetong
    Sun, Xia
    Sun, Xianzhi
    Wang, Wenli
    Zheng, Chengshu
    SCIENTIA HORTICULTURAE, 2023, 308
  • [25] Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants
    Zhou, Li
    Wang, Na-Na
    Gong, Si-Ying
    Lu, Rui
    Li, Yang
    Li, Xue-Bao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2015, 96 : 311 - 320
  • [26] The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana
    Chu, Xiaoqian
    Wang, Chen
    Chen, Xiaobo
    Lu, Wenjing
    Li, Han
    Wang, Xiuling
    Hao, Lili
    Guo, Xingqi
    PLOS ONE, 2015, 10 (11):
  • [27] A Heat Shock Transcription Factor TrHSFB2a of White Clover Negatively Regulates Drought, Heat and Salt Stress Tolerance in Transgenic Arabidopsis
    Iqbal, Muhammad Zafar
    Jia, Tong
    Tang, Tao
    Anwar, Muhammad
    Ali, Asif
    Hassan, Muhammad Jawad
    Zhang, Youzhi
    Tang, Qilin
    Peng, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [28] A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant
    Yu, Yongang
    Wu, Yanxia
    He, Lingyun
    PLANT MOLECULAR BIOLOGY, 2023, 113 (4-5) : 171 - 191
  • [29] Isolation and identification of wheat gene TaDIS1 encoding a RING finger domain protein, which negatively regulates drought stress tolerance in transgenic Arabidopsis
    Liu, Yan
    Li, Liqun
    Zhang, Li
    Lv, Qian
    Zhao, Yi
    Li, Xuejun
    PLANT SCIENCE, 2018, 275 : 49 - 59
  • [30] A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco
    Wei, Wei
    Zhang, Yuxiu
    Han, Lu
    Guan, Ziqiu
    Chai, Tuanyao
    PLANT CELL REPORTS, 2008, 27 (04) : 795 - 803