Bootstrap variants of the Akaike information criterion for mixed model selection

被引:48
|
作者
Shang, Junfeng [1 ]
Cavanaugh, Joseph E. [2 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
AIC; Kullback-Leibler information; model selection criteria;
D O I
10.1016/j.csda.2007.06.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two bootstrap-corrected variants of the Akaike information criterion are proposed for the purpose of small-sample mixed model selection. These two variants are asymptotically equivalent, and provide asymptotically unbiased estimators of the expected Kullback-Leibler discrepancy between the true model and a fitted candidate model. The performance of the criteria is investigated in a simulation study where the random effects and the errors for the true model are generated from a Gaussian distribution. The parametric bootstrap is employed. The simulation results suggest that both criteria provide effective tools for choosing a mixed model with an appropriate mean and covariance structure. A theoretical asymptotic justification for the variants is presented in the Appendix. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2004 / 2021
页数:18
相关论文
共 50 条
  • [1] An assumption for the development of bootstrap variants of the Akaike information criterion in mixed models
    Shang, Junfeng
    Cavanaugh, Joseph E.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1422 - 1429
  • [2] A primer on model selection using the Akaike Information Criterion
    Portet, Stephanie
    INFECTIOUS DISEASE MODELLING, 2020, 5 : 111 - 128
  • [3] The reliability of the Akaike information criterion method in cosmological model selection
    Tan, M. Y. J.
    Biswas, Rahul
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 419 (04) : 3292 - 3303
  • [4] Marker selection by Akaike information criterion and Bayesian information criterion
    Li, WT
    Nyholt, DR
    GENETIC EPIDEMIOLOGY, 2001, 21 : S272 - S277
  • [5] An Akaike information criterion for model selection in the presence of incomplete data
    Cavanaugh, JE
    Shumway, RH
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 67 (01) : 45 - 65
  • [6] Mixture structure analysis using the Akaike Information Criterion and the bootstrap
    Solka, JL
    Wegman, EJ
    Priebe, CE
    Poston, WL
    Rogers, GW
    STATISTICS AND COMPUTING, 1998, 8 (03) : 177 - 188
  • [7] Mixture structure analysis using the Akaike Information Criterion and the bootstrap
    Jeffrey L. Solka
    Edward J. Wegman
    Carey E. Priebe
    Wendy L. Poston
    George W. Rogers
    Statistics and Computing, 1998, 8 : 177 - 188
  • [8] Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies
    Anderson, DR
    Burnham, KP
    White, GC
    JOURNAL OF APPLIED STATISTICS, 1998, 25 (02) : 263 - 282
  • [9] Uninformative Parameters and Model Selection Using Akaike's Information Criterion
    Arnold, Todd W.
    JOURNAL OF WILDLIFE MANAGEMENT, 2010, 74 (06): : 1175 - 1178
  • [10] Model selection in dynamic contrast enhanced MRI: The Akaike Information Criterion
    Ingrisch, M.
    Sourbron, S.
    Reiser, M. F.
    Peller, M.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 356 - 358