Interferon-γ, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing

被引:190
作者
Strehl, B [1 ]
Seifert, U [1 ]
Krüger, E [1 ]
Heink, S [1 ]
Kuckelkorn, U [1 ]
Kloetzel, PM [1 ]
机构
[1] Berlin Univ, Charite, Inst Biochem, D-10117 Berlin, Germany
关键词
D O I
10.1111/j.0105-2896.2005.00308.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The proteasome system is a central component of a cascade of proteolytic processing steps required to generate antigenic peptides presented at the cell surface to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The nascent protein pool or DRiPs (defective ribosomal products) appear to represent an important source for MHC class I epitopes. Owing to the destructive activities of aminopeptidases in the cytosol, at most 1% of the peptides generated by the ubiquitin-proteasome system seems to be made available to the immune system. Interferon-gamma (IFN-gamma) helps to override these limitations by the formation of immunoproteasomes, the activator complex PA28, and the induction of several aminopeptidases. Both immunoproteasomes and PA28 use cleavage sites already used by constitutive proteasomes but with altered and in some cases dramatically enhanced frequency. Therefore, two proteolytic cascades appear to have evolved to provide MHC class I epitopes. The 'constitutive proteolytic cascade' is designed to efficiently degrade proteins to single amino acid residues, allowing only a small percentage of peptides to be presented at the cell surface. In contrast, the IFN-gamma-controlled proteolytic cascade generates larger amounts of appropriate antigenic peptides, assuring more peptides to overcome the proteolytic restrictions of the constitutive system, thereby enhancing MHC class I antigen presentation.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 96 条
[1]   INTERFERON-GAMMA INDUCES DIFFERENT SUBUNIT ORGANIZATIONS AND FUNCTIONAL DIVERSITY OF PROTEASOMES [J].
AKI, M ;
SHIMBARA, N ;
TAKASHINA, M ;
AKIYAMA, K ;
KAGAWA, S ;
TAMURA, T ;
TANAHASHI, N ;
YOSHIMURA, T ;
TANAKA, K ;
ICHIHARA, A .
JOURNAL OF BIOCHEMISTRY, 1994, 115 (02) :257-269
[2]   Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site [J].
Beekman, NJ ;
van Veelen, PA ;
van Hall, T ;
Neisig, A ;
Sijts, A ;
Camps, M ;
Kloetzel, PM ;
Neefjes, JJ ;
Melief, CJ ;
Ossendorp, F .
JOURNAL OF IMMUNOLOGY, 2000, 164 (04) :1898-1905
[3]   PROTEASOME COMPONENTS WITH RECIPROCAL EXPRESSION TO THAT OF THE MHC-ENCODED LMP PROTEINS [J].
BELICH, MP ;
GLYNNE, RJ ;
SENGER, G ;
SHEER, D ;
TROWSDALE, J .
CURRENT BIOLOGY, 1994, 4 (09) :769-776
[4]   Interferon-γ can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase [J].
Beninga, J ;
Rock, KL ;
Goldberg, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (30) :18734-18742
[5]   INTERFERON-GAMMA STIMULATION MODULATES THE PROTEOLYTIC ACTIVITY AND CLEAVAGE SITE PREFERENCE OF 20S MOUSE PROTEASOMES [J].
BOES, B ;
HENGEL, H ;
RUPPERT, T ;
MULTHAUP, G ;
KOSZINOWSKI, UH ;
KLOETZEL, PM .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (03) :901-909
[6]   Phosphorylation of 20S proteasome alpha subunit C8 (α7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon [J].
Bose, S ;
Stratford, FLL ;
Broadfoot, KI ;
Mason, GGF ;
Rivett, AJ .
BIOCHEMICAL JOURNAL, 2004, 378 :177-184
[7]   The base of the proteasome regulatory particle exhibits chaperone-like activity [J].
Braun, BC ;
Glickman, M ;
Kraft, R ;
Dahlmann, B ;
Kloetzel, PM ;
Finley, D ;
Schmidt, M .
NATURE CELL BIOLOGY, 1999, 1 (04) :221-226
[8]   Identification and characterization of a mammalian protein interacting with 20S proteasome precursors [J].
Burri, L ;
Höckendorff, J ;
Boehm, U ;
Klamp, T ;
Dohmen, RJ ;
Lévy, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (19) :10348-10353
[9]   26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide [J].
Cascio, P ;
Hilton, C ;
Kisselev, AF ;
Rock, KL ;
Goldberg, AL .
EMBO JOURNAL, 2001, 20 (10) :2357-2366
[10]   GENES ENCODED IN THE MAJOR HISTOCOMPATIBILITY COMPLEX AFFECTING THE GENERATION OF PEPTIDES FOR TAP TRANSPORT [J].
CERUNDOLO, V ;
KELLY, A ;
ELLIOTT, T ;
TROWSDALE, J ;
TOWNSEND, A .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1995, 25 (02) :554-562