THERMODYNAMICS OF THE SOLAR CORONA AND EVOLUTION OF THE SOLAR MAGNETIC FIELD AS INFERRED FROM THE TOTAL SOLAR ECLIPSE OBSERVATIONS OF 2010 JULY 11

被引:65
|
作者
Habbal, Shadia Rifai [1 ]
Druckmueller, Miloslav [2 ]
Morgan, Huw [1 ]
Ding, Adalbert [3 ,4 ]
Johnson, Judd [5 ]
Druckmuellerova, Hana [2 ]
Daw, Adrian [6 ]
Arndt, Martina B. [7 ]
Dietzel, Martin [8 ]
Saken, Jon [9 ]
机构
[1] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA
[2] Brno Univ Technol, Fac Mech Engn, Brno 61669, Czech Republic
[3] Tech Univ Berlin, Inst Opt & Atom Phys, Berlin, Germany
[4] Inst Tech Phys, Berlin, Germany
[5] Electricon, Boulder, CO 80204 USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[7] Bridgewater State Univ, Dept Phys, Bridgewater, MA 02325 USA
[8] ASTELCO, Munich, Germany
[9] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA
基金
美国国家科学基金会;
关键词
eclipses; solar wind; Sun: corona; ELECTRON-TEMPERATURE; ULTRAVIOLET;
D O I
10.1088/0004-637X/734/2/120
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report on the first multi-wavelength coronal observations, taken simultaneously in white light, H alpha 656.3 nm, Fe IX 435.9 nm, Fe x 637.4 nm, Fe XI 789.2 nm, Fe XIII 1074.7 nm, Fe XIV 530.3 nm, and Ni XV 670.2 nm, during the total solar eclipse of 2010 July 11 from the atoll of Tatakoto in French Polynesia. The data enabled temperature differentiations as low as 0.2 x 10(6) K. The first-ever images of the corona in Fe IX and Ni XV showed that there was very little plasma below 5 x 10(5) K and above 2.5 x 10(6) K. The suite of multi-wavelength observations also showed that open field lines have an electron temperature near 1 x 10(6) K, while the hottest, 2 x 10(6) K, plasma resides in intricate loops forming the bulges of streamers, also known as cavities, as discovered in our previous eclipse observations. The eclipse images also revealed unusual coronal structures, in the form of ripples and streaks, produced by the passage of coronal mass ejections and eruptive prominences prior to totality, which could be identified with distinct temperatures for the first time. These trails were most prominent at 10(6) K. Simultaneous Fe x 17.4 nm observations from Proba2/SWAP provided the first opportunity to compare Fe x emission at 637.4 nm with its extreme-ultraviolet (EUV) counterpart. This comparison demonstrated the unique diagnostic capabilities of the coronal forbidden lines for exploring the evolution of the coronal magnetic field and the thermodynamics of the coronal plasma, in comparison with their EUV counterparts in the distance range of 1-3 R-circle dot. These diagnostics are currently missing from present space-borne and ground-based observatories.
引用
收藏
页数:18
相关论文
empty
未找到相关数据