Convergence of local variational spline interpolation

被引:2
作者
Kersey, Scott [1 ]
Lai, Ming-Jun [2 ]
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
splines; interpolation; approximation;
D O I
10.1016/j.jmaa.2007.10.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first revisit a classical problem of computing variational splines. We propose to compute local variational splines in the sense that they are interpolatory splines which minimize the energy norm over a subinterval. We shall show that the error between local and global variational spline interpolants decays exponentially over a fixed subinterval as the support of the local variational spline increases. By piecing together these locally defined splines, one can obtain a very good C-0 approximation of the global variational spline. Finally we generalize this idea to approximate global tensor product B-spline interpolatory surfaces. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:398 / 415
页数:18
相关论文
共 8 条
  • [1] Ahlberg JH., 1967, The Theory of Splines and Their Applications
  • [2] Birkhoff G., 1965, APPROXIMATION FUNCTI, P164
  • [3] De Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
  • [4] DEVORE RA, 1991, CONSTRUCTIVE APPROXI
  • [5] ON THE MARKOV INEQUALITY IN LP-SPACES
    GOETGHELUCK, P
    [J]. JOURNAL OF APPROXIMATION THEORY, 1990, 62 (02) : 197 - 205
  • [6] LAI MJ, 2003, UNPUB DOMAIN DECOMPO
  • [7] Schumaker L., 1981, SPLINE FUNCTIONS BAS
  • [8] Error bounds for minimal energy bivariate polynomial splines
    von Golitschek, M
    Lai, MJ
    Schumaker, LL
    [J]. NUMERISCHE MATHEMATIK, 2002, 93 (02) : 315 - 331