Hardening quantum machine learning against adversaries

被引:11
作者
Wiebe, Nathan [1 ]
Kumar, Ram Shankar Siva [1 ]
机构
[1] Microsoft Corp, One Microsoft Way, Redmond, WA 98052 USA
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
quantum computing; quantum machine learning; quantum algorithms; HAMILTONIAN SIMULATION;
D O I
10.1088/1367-2630/aae71a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Security of machine learning has begun to become a serious issue for present day applications. An important question remaining is whether emerging quantum technologies will help or hinder the security of machine learning. Here we discuss a number of ways that quantum information can be used to help make quantum classifiers more secure or private. In particular, we demonstrate a form of robust principal component analysis that, under some circumstances, can provide an exponential speedup relative to robust methods used at present. To demonstrate this approach we introduce a linear combinations of unitaries Hamiltonian simulation method that we show functions when given an imprecise Hamiltonian oracle, which maybe of independent interest. We also introduce a new quantum approach for bagging and boosting that can use quantum superposition over the classifiers or splits of the training set to aggragate over many more models than would be possible classically. Finally, we provide a private form of k-means clustering that can be used to prevent an all powerful adversary from learning more than a small fraction of a bit from any user. These examples show the role that quantum technologies can play in the security of ML and vice versa. This illustrates that quantum computing can provide useful advantages to machine learning apart from speedups.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Quantum Machine Learning: Survey
    Medisetty, Pramoda
    Evuru, Poorna Chand
    Vulavalapudi, Veda Manohara Sunanda
    Pallapothu, Leela Krishna Kumar
    Annapurna, Bala
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (06) : 971 - 981
  • [2] Machine Learning: Quantum vs Classical
    Khan, Tariq M.
    Robles-Kelly, Antonio
    IEEE ACCESS, 2020, 8 : 219275 - 219294
  • [3] Survey on Quantum Machine Learning
    Wang, Jian
    Zhang, Rui
    Jiang, Nan
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (08): : 3843 - 3877
  • [4] On the Applicability of Quantum Machine Learning
    Raubitzek, Sebastian
    Mallinger, Kevin
    ENTROPY, 2023, 25 (07)
  • [5] An introduction to quantum machine learning
    Schuld, Maria
    Sinayskiy, Ilya
    Petruccione, Francesco
    CONTEMPORARY PHYSICS, 2015, 56 (02) : 172 - 185
  • [6] Quantum Embedding Search for Quantum Machine Learning
    Nguyen, Nam
    Chen, Kwang-Cheng
    IEEE ACCESS, 2022, 10 : 41444 - 41456
  • [7] Discriminating Quantum States with Quantum Machine Learning
    Quiroga, David
    Date, Prasanna
    Pooser, Raphael
    2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, : 56 - 63
  • [8] Discriminating Quantum States with Quantum Machine Learning
    Quiroga, David
    Date, Prasanna
    Pooser, Raphael
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 481 - 482
  • [9] An introduction to quantum machine learning: from quantum logic to quantum deep learning
    Leonardo Alchieri
    Davide Badalotti
    Pietro Bonardi
    Simone Bianco
    Quantum Machine Intelligence, 2021, 3
  • [10] An introduction to quantum machine learning: from quantum logic to quantum deep learning
    Alchieri, Leonardo
    Badalotti, Davide
    Bonardi, Pietro
    Bianco, Simone
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (02)