Relativistic electron acceleration by surface plasma waves excited with high intensity laser pulses

被引:9
|
作者
Zhu, X. M. [1 ,2 ,3 ]
Prasad, R. [1 ]
Swantusch, M. [1 ]
Aurand, B. [1 ]
Andreev, A. A. [4 ,5 ]
Willi, O. [1 ]
Cerchez, M. [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Laser & Plasmaphys, Univ Str 1, Dusseldorf 40225, Germany
[2] Chinese Acad Sci, Natl Astron Observ, Nanjing Inst Astron Opt & Technol, Nanjing 210042, Peoples R China
[3] Chinese Acad Sci, Nanjing Inst Astron Opt & Technol, Key Lab Astron Opt & Technol, Nanjing 210042, Peoples R China
[4] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[5] ELI ALPS, Dugon Ter 13, H-6722 Szeged, Hungary
来源
HIGH POWER LASER SCIENCE AND ENGINEERING | 2020年 / 8卷
关键词
laser-driven electron sources; relativistic plasmas; structured targets; surface electrons; HARMONICS; TARGETS;
D O I
10.1017/hpl.2020.14
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The process of high energy electron acceleration along the surface of grating targets (GTs) that were irradiated by a relativistic, high-contrast laser pulse at an intensity $I=2.5\times 10<^>{20}\text{W}/\text{cm}<^>{2}$ was studied. Our experimental results demonstrate that for a GT with a periodicity twice the laser wavelength, the surface electron flux is more intense for a laser incidence angle that is larger compared to the resonance angle predicted by the linear model. An electron beam with a peak charge of ${\sim}2.7\text{nC}/\text{sr}$, for electrons with energies ${>}1.5\text{MeV}$, was measured. Numerical simulations carried out with parameters similar to the experimental conditions also show an enhanced electron flux at higher incidence angles depending on the preplasma scale length. A theoretical model that includes ponderomotive effects with more realistic initial preplasma conditions suggests that the laser-driven intensity and preformed plasma scale length are important for the acceleration process. The predictions closely match the experimental and computational results.
引用
收藏
页数:10
相关论文
共 41 条
  • [31] Measurements of electron-induced neutrons as a tool for determination of electron temperature of fast electrons in the task of optimization laser-produced plasma ions acceleration
    Sakaki, H.
    Nishiuchi, M.
    Maeda, S.
    Sagisaka, A.
    Pirozhkov, A. S.
    Pikuz, T.
    Faenov, A.
    Ogura, K.
    Fukami, T.
    Matsukawa, K.
    Kanasaki, M.
    Fukuda, Y.
    Yogo, A.
    Esirkepov, T.
    Kiriyama, H.
    Shimomura, T.
    Nakai, Y.
    Tanoue, M.
    Torimoto, K.
    Okamoto, M.
    Sato, T.
    Niita, K.
    Tamura, J.
    Nishio, K.
    Sako, H.
    Yamauchi, T.
    Watanabe, Y.
    Bulanov, S.
    Kondo, K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (02)
  • [32] Front versus rear side light-ion acceleration from high-intensity laser-solid interactions
    Willingale, L.
    Petrov, G. M.
    Maksimchuk, A.
    Davis, J.
    Freeman, R. R.
    Matsuoka, T.
    Murphy, C. D.
    Ovchinnikov, V. M.
    Van Woerkom, L.
    Krushelnick, K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (01)
  • [33] 2.5-MeV neutron source controlled by high-intensity pulsed laser generating plasma
    Torrisi, L.
    Torrisi, A.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2021, 61 (05)
  • [34] Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon
    Vaisseau, X.
    Morace, A.
    Touati, M.
    Nakatsutsumi, M.
    Baton, S. D.
    Hulin, S.
    Nicolai, Ph.
    Nuter, R.
    Batani, D.
    Beg, F. N.
    Breil, J.
    Fedosejevs, R.
    Feugeas, J. -L.
    Forestier-Colleoni, P.
    Fourment, C.
    Fujioka, S.
    Giuffrida, L.
    Kerr, S.
    McLean, H. S.
    Sawada, H.
    Tikhonchuk, V. T.
    Santos, J. J.
    PHYSICAL REVIEW LETTERS, 2017, 118 (20)
  • [35] Achieving pair creation via linear and nonlinear Breit-Wheeler processes in dense plasmas irradiated by high-intensity laser pulses
    He, Y.
    Blackburn, T. G.
    Toncian, T.
    Arefiev, A.
    PHYSICS OF PLASMAS, 2022, 29 (05)
  • [36] Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation
    Myatt, J.
    Delettrez, J. A.
    Maximov, A. V.
    Meyerhofer, D. D.
    Short, R. W.
    Stoeckl, C.
    Storm, M.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [37] P3: An installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines
    Weber, S.
    Bechet, S.
    Borneis, S.
    Brabec, L.
    Bucka, M.
    Chacon-Golcher, E.
    Ciappina, M.
    DeMarco, M.
    Fajstavr, A.
    Falk, K.
    Garcia, E. -R.
    Grosz, J.
    Gu, Y. -J.
    Hernandez, J. -C.
    Holec, M.
    Janecka, P.
    Jantac, M.
    Jirka, M.
    Kadlecova, H.
    Khikhlukha, D.
    Klimo, O.
    Korn, G.
    Kramer, D.
    Kumar, D.
    Lastovicka, T.
    Lutoslawski, P.
    Morejon, L.
    Olsovcova, V.
    Rajdl, M.
    Renner, O.
    Rus, B.
    Singh, S.
    Smid, M.
    Sokol, M.
    Versaci, R.
    Vrana, R.
    Vranic, M.
    Vyskocil, J.
    Wolf, A.
    Yu, Q.
    MATTER AND RADIATION AT EXTREMES, 2017, 2 (04) : 149 - 176
  • [38] Comparative study of amplified spontaneous emission and short pre-pulse impacts onto fast electron generation at sub-relativistic femtosecond laser-plasma interaction
    Ivanov, K. A.
    Shulyapov, S. A.
    Ksenofontov, P. A.
    Tsymbalov, I. N.
    Volkov, R. V.
    Savel'ev, A. B.
    Brantov, A. V.
    Bychenkov, V. Yu.
    Turinge, A. A.
    Lapik, A. M.
    Rusakov, A. V.
    Djilkibaev, R. M.
    Nedorezov, V. G.
    PHYSICS OF PLASMAS, 2014, 21 (09)
  • [39] Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam
    Thomas, A. G. R.
    Ridgers, C. P.
    Bulanov, S. S.
    Griffin, B. J.
    Mangles, S. P. D.
    PHYSICAL REVIEW X, 2012, 2 (04):
  • [40] Micron-scale fast electron filaments and recirculation determined from rear-side optical emission in high-intensity laser-solid interactions
    Bellei, C.
    Nagel, S. R.
    Kar, S.
    Henig, A.
    Kneip, S.
    Palmer, C.
    Saevert, A.
    Willingale, L.
    Carroll, D.
    Dromey, B.
    Green, J. S.
    Markey, K.
    Simpson, P.
    Clarke, R. J.
    Lowe, H.
    Neely, D.
    Spindloe, C.
    Tolley, M.
    Kaluza, M. C.
    Mangles, S. P. D.
    McKenna, P.
    Norreys, P. A.
    Schreiber, J.
    Zepf, M.
    Davies, J. R.
    Krushelnick, K.
    Najmudin, Z.
    NEW JOURNAL OF PHYSICS, 2010, 12