Standoff Detection from Diffusely Scattering Surfaces using Dual Quantum Cascade Laser Comb Spectroscopy

被引:5
作者
Hensley, Joel M. [1 ]
Brown, Justin M. [1 ]
Allen, Mark G. [1 ]
Geiser, Markus [2 ]
Allmendinger, Pitt [2 ]
Mangold, Markus [2 ]
Hugi, Andreas [2 ]
Jouy, Pierre [3 ]
Faist, Jerome [3 ]
机构
[1] Phys Sci Inc, 20 New England Business Ctr, Andover, MA 01810 USA
[2] IRsweep AG, Laubisruetistr 44, CH-8712 Staefa, Switzerland
[3] Swiss Fed Inst Technol, August Piccard Hof 1,HPT F 3-1, CH-8093 Zurich, Switzerland
来源
ULTRAFAST BANDGAP PHOTONICS III | 2018年 / 10638卷
关键词
Standoff Detection; Quantum Cascade Laser; Dual Comb Spectroscopy; Longwave Infra-red; Diffusely Scattering Surfaces;
D O I
10.1117/12.2305190
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using dual optical frequency comb (OFC) spectroscopy in the longwave infrared (LWIR), we demonstrate standoff detection of trace amounts of target compounds on diffusely scattering surfaces. The OFC is based on quantum cascade lasers (QCL) that emit similar to 1 Watt of optical power under cw operation at room temperature over coherent comb bandwidths approaching 100 cm(-1). We overlap two nearly identical 1250 cm(-1) QCL OFC sources so that the two interfering optical combs create via heterodyne a single comb in the radio frequency (rf) that represents the entire optical spectrum in a single acquisition. In a laboratory scale demonstration we show detection of two spectrally distinct fluorinated silicone oils, poly(methyl-3,3,3-trifluoropropylsiloxane) and Krytox (TM), that act as LWIR simulants for security relevant compounds whose room temperature vapor pressure is too low to be detected in the gas phase. These target compounds are applied at mass loadings of 0.3 to 90 mu g/cm(2) to sanded aluminum surfaces. Only the diffusely scattered light is collected by a primary collection optic and focused onto a high speed (0.5 GHz bandwidth) thermoelectrically cooled mercury cadmium telluride (MCT) detector. At standoff distances of both 0.3 and 1 meter, we demonstrate 3 mu g/cm(2) and 1 mu g/cm(2) detection limits against poly(methyl-3,3,3-trifluoropropylsiloxane) and Krytox (TM), respectively.
引用
收藏
页数:8
相关论文
共 11 条
[1]   Monolithic and multi-GigaHertz mode-locked semiconductor lasers: Constructions, experiments, models and applications [J].
Avrutin, EA ;
Marsh, JH ;
Portnoi, EL .
IEE PROCEEDINGS-OPTOELECTRONICS, 2000, 147 (04) :251-278
[2]   Plasmon-enhanced waveguide for dispersion compensation in mid-infrared quantum cascade laser frequency combs [J].
Bidaux, Yves ;
Sergachev, Ilia ;
Wuester, Wolf ;
Maulini, Richard ;
Gresch, Tobias ;
Bismuto, Alfredo ;
Blaser, Stephane ;
Muller, Antoine ;
Faist, Jerome .
OPTICS LETTERS, 2017, 42 (08) :1604-1607
[3]   Coherent dual-comb spectroscopy at high signal-to-noise ratio [J].
Coddington, I. ;
Swann, W. C. ;
Newbury, N. R. .
PHYSICAL REVIEW A, 2010, 82 (04)
[4]   SHORT PULSE GENERATION USING MULTISEGMENT MODE-LOCKED SEMICONDUCTOR-LASERS [J].
DERICKSON, DJ ;
HELKEY, RJ ;
MAR, A ;
KARIN, JR ;
WASSERBAUER, JG ;
BOWERS, JE .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (10) :2186-2202
[5]   Mid-infrared frequency comb based on a quantum cascade laser [J].
Hugi, Andreas ;
Villares, Gustavo ;
Blaser, Stephane ;
Liu, H. C. ;
Faist, Jerome .
NATURE, 2012, 492 (7428) :229-233
[6]   Dual comb operation of λ ∼ 8.2 μm quantum cascade laser frequency comb with 1 Woptical power [J].
Jouy, P. ;
Wolf, J. M. ;
Bidaux, Y. ;
Allmendinger, P. ;
Mangold, M. ;
Beck, M. ;
Faist, J. .
APPLIED PHYSICS LETTERS, 2017, 111 (14)
[7]   Time-domain mid-infrared frequency-comb spectrometer [J].
Keilmann, F ;
Gohle, C ;
Holzwarth, R .
OPTICS LETTERS, 2004, 29 (13) :1542-1544
[8]   Passively modelocked surface-emitting semiconductor lasers [J].
Keller, Ursula ;
Tropper, Anne C. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 429 (02) :67-120
[9]   Mode-locked quantum-dot lasers [J].
Rafailov, E. U. ;
Cataluna, M. A. ;
Sibbett, W. .
NATURE PHOTONICS, 2007, 1 (07) :395-401
[10]   Spectrometry with frequency combs [J].
Schiller, S .
OPTICS LETTERS, 2002, 27 (09) :766-768