Mechanism for the water-gas shift reaction on monofunctional platinum and cause of catalyst deactivation

被引:60
|
作者
Flaherty, David W. [1 ]
Yu, Wen-Yueh [1 ]
Pozun, Zachary D. [2 ]
Henkelman, Graeme [2 ]
Mullins, C. Buddie [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Texas Mat Inst, Ctr Nano & Mol Sci & Technol,Ctr Electrochem, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem & Biochem, Texas Mat Inst, Ctr Nano & Mol Sci & Technol,Ctr Electrochem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Copper; Noble metal; Reforming; Model catalyst; Poisoning; Hydrogen; Reaction mechanism; FINDING SADDLE-POINTS; SCANNING-TUNNELING-MICROSCOPY; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; FUEL-CELL APPLICATIONS; ELASTIC BAND METHOD; HIGH-PRESSURE; SURFACE SCIENCE; FORMIC-ACID; NANOPARTICLES;
D O I
10.1016/j.jcat.2011.06.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The behavior of monofunctional platinum, Pt(1 1 1), for the water-gas shift reaction has been investigated using experimental and theoretical methods. Kinetic and isotopic measurements performed from 525 to 675 K are consistent with an associative mechanism for the water-gas shift reaction in which carbon monoxide is oxidized by a hydroxyl group. The kinetically-relevant step consists of the unimolecular decomposition of an adsorbed carboxylate intermediate. The turnover frequency of Pt(1 1 1) is five times greater than that observed on Cu(1 1 1) under identical conditions (612 K, 26 Tort CO, 10 Torr H2O); however, Pt(1 1 1) loses activity over time due to the formation of carbonaceous deposits, a process not observed in similar studies of Cu(1 11). Our experimental and theoretical results suggest that CO dissociates via two pathways: the Boudouard reaction and through a COH intermediate. Nucleation of carbon at step-edges and subsequent oligomerization deactivate the catalyst. These results provide insight into the synergistic roles of noble metal clusters and active supports for the water-gas shift reaction. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 50 条
  • [21] Reaction mechanism analysis for molybdenum-based water-gas shift catalysts
    Sasaki, Takashi
    Suzuki, Tomoko
    Iizuka, Hidehiro
    Takaoka, Masaki
    APPLIED CATALYSIS A-GENERAL, 2017, 532 : 105 - 110
  • [22] Elucidation of the Reverse Water-Gas Shift Reaction Mechanism over an Isolated Ru Atom on CeO2(111)
    Chen, Lulu
    Filot, Ivo A. W.
    Hensen, Emiel J. M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (41): : 20314 - 20324
  • [23] Hydrogen production by the water-gas shift reaction: A comprehensive review on catalysts, kinetics, and reaction mechanism
    Dehimi, Leila
    Alioui, Oualid
    Benguerba, Yacine
    Yadav, Krishna Kumar
    Bhutto, Javed Khan
    Fallatah, Ahmed M.
    Shukla, Tanuj
    Alreshidi, Maha Awjan
    Balsamo, Marco
    Badawi, Michael
    Erto, Alessandro
    FUEL PROCESSING TECHNOLOGY, 2025, 267
  • [24] Direct Pathway for Water-Gas Shift Reaction in Gas Phase
    Harabuchi, Yu
    Maeda, Satoshi
    Taketsugu, Tetsuya
    Ohno, Koichi
    CHEMISTRY LETTERS, 2014, 43 (02) : 193 - 195
  • [25] The water gas shift reaction: Catalysts and reaction mechanism
    Baraj, Erlisa
    Ciahotny, Karel
    Hlincik, Tomas
    FUEL, 2021, 288
  • [26] Silica-encapsulated platinum catalysts for the low-temperature water-gas shift reaction
    Wang, Yuan
    Zhai, Yanping
    Pierre, Danny
    Flytzani-Stephanopoulos, Maria
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 127 : 342 - 350
  • [27] WATER-GAS SHIFT REACTION OVER NICKEL HYDROXIDES
    ANDREEV, A
    IDAKIEV, V
    KOSTOV, K
    GABROVSKA, M
    CATALYSIS LETTERS, 1995, 31 (2-3) : 245 - 252
  • [28] Determination of the Low-Temperature Water-Gas Shift Reaction Kinetics Using a Cu-Based Catalyst
    Mendes, Dingo
    Chibante, Vania
    Mendes, Adelio
    Madeira, Luis M.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (22) : 11269 - 11279
  • [29] Catalytic Active Filter for Water-Gas Shift Reaction
    Hwang, Kyung-Ran
    Cho, Sung-Ho
    Ihm, Son-Ki
    Lee, Chun-Boo
    Park, Jong-Soo
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2009, 42 : S199 - S203
  • [30] Influence of salts on the subcritical water-gas shift reaction
    Akgul, Gokcen
    Kruse, Andrea
    JOURNAL OF SUPERCRITICAL FLUIDS, 2012, 66 : 207 - 214