Three-Dimensional Fibrous Iron as Anode Current Collector for Rechargeable Zinc-Air Batteries

被引:9
作者
Khezri, Ramin [1 ]
Jirasattayaporn, Kridsada [1 ]
Abbasi, Ali [1 ]
Maiyalagan, Thandavarayan [2 ]
Mohamad, Ahmad Azmin [3 ]
Kheawhom, Soorathep [1 ,4 ]
机构
[1] Chulalongkorn Univ, Dept Chem Engn, Fac Engn, Bangkok 10330, Thailand
[2] SRM Inst Sci & Technol, Dept Chem, Chennai 603203, Tamil Nadu, India
[3] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Nibong Tebal 14300, Malaysia
[4] Chulalongkorn Univ, Res Unit Adv Mat Energy Storage, Bangkok 10330, Thailand
关键词
zinc-air battery; porous zinc anode; iron fibers; electrochemical performances; ELECTROCHEMICAL CHARACTERISTICS; HYDROGEN EVOLUTION; HIGH-CAPACITY; NICKEL FOAM; PERFORMANCE; HYDROXIDE; ELECTRODE; BEHAVIOR; ENERGY;
D O I
10.3390/en13061429
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A three-dimensional (3D) fibrous structure with a high active surface and conductive pathway proved to be an excellent anode current collector for rechargeable zinc-air batteries (ZABs). Herein, a cost-effective and highly stable zinc (Zn) electrode, based on Zn electrodeposited on iron fibers (Zn/IF), is duly examined. Electrochemical characteristics of the proposed electrode are seen to compete with a conventional zinc/nickel foam (Zn/NF) electrode, implying that it can be a suitable alternative for use in ZABs. Results show that the Zn/IF electrode exhibits an almost similar trend as Zn/NF in cyclic voltammetry (CV). Moreover, by using a Zn/IF electrode, electrochemical impedance spectroscopy (EIS) demonstrates lower charge transfer resistance. In the application of a rechargeable ZAB, the fibrous Zn/IF electrode exhibits a high coulombic efficiency (CE) of 78%, close to the conventional Zn/NF (80%), with almost similar capacity and lower charge transfer resistance, after 200 charge/discharge cycles. It is evident that all the positive features of Zn/IF, especially its low cost, shows that it can be a valuable anode for ZABs.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Ag-Modified Cu Foams as Three-Dimensional Anodes for Rechargeable Zinc-Air Batteries
    Yu, Jiayuan
    Chen, Fuyi
    Tang, Quan
    Gebremariam, Tesfaye Tadesse
    Wang, Jiali
    Gong, Xiaofang
    Wang, Xiaolu
    ACS APPLIED NANO MATERIALS, 2019, 2 (05) : 2679 - 2688
  • [2] Benchmarking Anode Concepts: The Future of Electrically Rechargeable Zinc-Air Batteries
    Stock, Daniel
    Dongmo, Saustin
    Janek, Juergen
    Schroeder, Daniel
    ACS ENERGY LETTERS, 2019, 4 (06): : 1287 - 1300
  • [3] Three-dimensional interconnected graphene network-based high-performance air electrode for rechargeable zinc-air batteries
    An, Jia-Xing
    Meng, Yu
    Zhang, Hong-Bo
    Zhu, Yuanzhi
    Yu, Xiaohua
    Rong, Ju
    Hou, Peng-Xiang
    Liu, Chang
    Cheng, Hui-Ming
    Li, Jin-Cheng
    SUSMAT, 2024, 4 (03):
  • [4] Development of electrolytes for rechargeable zinc-air batteries: current progress, challenges, and future outlooks
    Getie, Fentahun Adamu
    Ayele, Delele Worku
    Habtu, Nigus Gabbiye
    Yihun, Fantahun Aklog
    Yemata, Temesgen Atnafu
    SN APPLIED SCIENCES, 2022, 4 (10):
  • [5] Fe-N/P-co-Doped Three-Dimensional Graphene Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries
    Duan, Wenjie
    Wang, Chen
    Sun, Peng
    Sun, Yinggang
    Zhuang, Yanqiong
    Wang, Jigang
    Li, Zhongfang
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 16662 - 16673
  • [6] A study of alkaline gel polymer electrolytes for rechargeable zinc-air batteries
    Thuy Nguyen Thanh Tran
    Chung, Hyun-Joong
    Ivey, Douglas G.
    ELECTROCHIMICA ACTA, 2019, 327
  • [7] Performance Decay of Air Electrode Configuration for Rechargeable Zinc-Air Batteries
    Xu, Ke
    Song, Jie
    Song, Pengxiang
    Xu, Guizhi
    Deng, Zhanfeng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)
  • [8] Closely packed planar polyphthalocyanine iron/hierarchical three-dimensional graphene as an oxygen electrocatalyst for the ORR and OER, and zinc-air batteries
    Liu, Yuepeng
    Li, Zhongfang
    Sun, Chongyun
    Wang, Shuaifeng
    Wang, Likai
    Niu, Xueliang
    Sun, Peng
    Zhang, Shenzhi
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (20) : 5216 - 5226
  • [9] Towards rechargeable zinc-air batteries with aqueous chloride electrolytes
    Clark, Simon
    Mainar, Aroa R.
    Iruin, Elena
    Colmenares, Luis C.
    Blazquez, J. Alberto
    Tolchard, Julian R.
    Latz, Arnulf
    Horstmann, Birger
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) : 11387 - 11399
  • [10] Three-dimensional porous composite framework assembled with CuO microspheres as anode current collector for lithium-ion batteries
    Huang ShiMin
    Luo Jian
    Yuan Wei
    Zhao BoTe
    Chen Yu
    Tang Yong
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2019, 62 (01) : 70 - 79