Generating random density matrices

被引:133
作者
Zyczkowski, Karol [1 ,2 ]
Penson, Karol A. [3 ]
Nechita, Ion [4 ,5 ]
Collins, Benoit [4 ,6 ]
机构
[1] Jagiellonian Univ, Inst Phys, Ul Reymonta 4, PL-30059 Krakow, Poland
[2] Polish Acad Sci, Ctr Fizyki Teoretycznej, PL-02668 Warsaw, Poland
[3] Univ Paris 06, Lab Phys Mat Condensee LPTMC, CNRS, UMR 7600, F-75252 Paris 05, France
[4] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[5] Univ Toulouse, Phys Theor Lab, CNRS, IRSAMC,UPS, F-31062 Toulouse, France
[6] Univ Lyon 1, CNRS, Inst Camille Jordan, F-69622 Villeurbanne, France
基金
加拿大自然科学与工程研究理事会;
关键词
MIXED QUANTUM STATES; ENSEMBLES; UNITARY; ENTROPY; VOLUME; SET;
D O I
10.1063/1.3595693
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi-partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N -> infinity, by the Marchenko-Pastur distribution. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595693]
引用
收藏
页数:20
相关论文
共 50 条
[41]   Entropic Updating of Probabilities and Density Matrices [J].
Vanslette, Kevin .
ENTROPY, 2017, 19 (12)
[42]   Random Matrices, Non-intersecting Random Walks, and Some Aspects of Universality [J].
Suidan, Toufic M. .
NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, :653-666
[43]   Edge universality for non-Hermitian random matrices [J].
Cipolloni, Giorgio ;
Erdos, Laszlo ;
Schroeder, Dominik .
PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) :1-28
[44]   Time series, correlation matrices and random matrix models [J].
Vinayak ;
Seligman, Thomas H. .
LATIN-AMERICAN SCHOOL OF PHYSICS MARCOS MOSHINSKY ELAF: NONLINEAR DYNAMICS IN HAMILTONIAN SYSTEMS, 2014, 1575 :196-217
[45]   Induced Ginibre ensemble of random matrices and quantum operations [J].
Fischmann, Jonit ;
Bruzda, Wojciech ;
Khoruzhenko, Boris A. ;
Sommers, Hans-Juergen ;
Zyczkowski, Karol .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
[46]   Universality classes of non-Hermitian random matrices [J].
Hamazaki, Ryusuke ;
Kawabata, Kohei ;
Kura, Naoto ;
Ueda, Masahito .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[47]   RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES [J].
Tao, Terence ;
Vu, Van .
ANNALS OF PROBABILITY, 2012, 40 (03) :1285-1315
[48]   Free probability for purely discrete eigenvalues of random matrices [J].
Collins, Benoit ;
Hasebe, Takahiro ;
Sakuma, Noriyoshi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (03) :1111-1150
[49]   Functional CLT for non-Hermitian random matrices [J].
Erdos, Laszlo ;
Ji, Hong Chang .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04) :2083-2105
[50]   Gaussian diagrammatics from circular ensembles of random matrices [J].
Novaes, Marcel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (08)