Generating random density matrices

被引:133
|
作者
Zyczkowski, Karol [1 ,2 ]
Penson, Karol A. [3 ]
Nechita, Ion [4 ,5 ]
Collins, Benoit [4 ,6 ]
机构
[1] Jagiellonian Univ, Inst Phys, Ul Reymonta 4, PL-30059 Krakow, Poland
[2] Polish Acad Sci, Ctr Fizyki Teoretycznej, PL-02668 Warsaw, Poland
[3] Univ Paris 06, Lab Phys Mat Condensee LPTMC, CNRS, UMR 7600, F-75252 Paris 05, France
[4] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[5] Univ Toulouse, Phys Theor Lab, CNRS, IRSAMC,UPS, F-31062 Toulouse, France
[6] Univ Lyon 1, CNRS, Inst Camille Jordan, F-69622 Villeurbanne, France
基金
加拿大自然科学与工程研究理事会;
关键词
MIXED QUANTUM STATES; ENSEMBLES; UNITARY; ENTROPY; VOLUME; SET;
D O I
10.1063/1.3595693
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transformations are introduced. To analyze statistical properties of quantum entanglement in bi-partite systems we analyze the distribution of Schmidt coefficients of random pure states. Such a distribution is derived in the case of a superposition of k random maximally entangled states. For another ensemble, obtained by performing selective measurements in a maximally entangled basis on a multi-partite system, we show that this distribution is given by the Fuss-Catalan law and find the average entanglement entropy. A more general class of structured ensembles proposed, containing also the case of Bures, forms an extension of the standard ensemble of structureless random pure states, described asymptotically, as N -> infinity, by the Marchenko-Pastur distribution. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595693]
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Learning with density matrices and random features
    Fabio A. González
    Alejandro Gallego
    Santiago Toledo-Cortés
    Vladimir Vargas-Calderón
    Quantum Machine Intelligence, 2022, 4
  • [22] Spectral density of mixtures of random density matrices for qubits
    Zhang, Lin
    Wang, Jiamei
    Chen, Zhihua
    PHYSICS LETTERS A, 2018, 382 (23) : 1516 - 1523
  • [23] Random density matrices versus random evolution of open system
    Pineda, Carlos
    Seligman, Thomas H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (42)
  • [24] RANDOM MATRICES GENERATING LARGE GROWTH IN LU FACTORIZATION WITH PIVOTING
    Higham, Desmond J.
    Higham, Nicholas J.
    Pranesh, Srikara
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (01) : 185 - 201
  • [25] Random Incidence Matrices: Moments of the Spectral Density
    M. Bauer
    O. Golinelli
    Journal of Statistical Physics, 2001, 103 : 301 - 337
  • [26] Random incidence matrices: Moments of the spectral density
    Bauer, M
    Golinelli, O
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (1-2) : 301 - 337
  • [27] Singularities of the density of states of random Gram matrices
    Alt, Johannes
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [28] DENSITY OF STATES FOR BANDED AND SPARSE RANDOM MATRICES
    FEINGOLD, M
    EUROPHYSICS LETTERS, 1992, 17 (02): : 97 - 102
  • [29] Generating accurate density matrices on the tangent space of a Grassmann manifold
    Tan, Jake A.
    Lao, Ka Un
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (05):
  • [30] RANDOM PALINDROMES - MULTIVARIATE GENERATING FUNCTION AND BERNOULLI DENSITY
    DUMAS, P
    THIMONIER, L
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 143 - 154