Synergistic effect of interface layer and mechanical pressure for advanced Li metal anodes

被引:34
作者
Lin, Liangdong [1 ]
Wang, Jianxu [2 ]
Li, Rui [1 ]
Wang, Chunming [2 ]
Zhang, Chenghui [3 ]
Yang, Jian [1 ]
Qian, Yitai [1 ,4 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250061, Peoples R China
[3] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[4] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
关键词
Pressure; Interface; Li metal; Anode; Batteries; SOLID-ELECTROLYTE INTERPHASE; UNIFORM LITHIUM DEPOSITION; EXTERNAL-PRESSURE; POUCH CELLS; PERFORMANCE; LIQUID; BATTERIES; EVOLUTION; BEHAVIOR; BILAYER;
D O I
10.1016/j.ensm.2019.12.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li metal anodes as one of promising anodes in next-generation batteries, face the challenges from infinite volume change and high reactivity to electrolytes that easily leads to unstable Li/electrolyte interface and unique dendrite growth of Li. Although mechanical pressure can effectively inhibit the dendrite growth of Li, it also increases the risk of short circuits, because Li metal easily grows into the separator under pressure. Here, an interface layer is introduced on Li metal to block this growth, using Li3P/LiCl as a model. Meanwhile, the dense and robust layer also reduce the side reactions between Li and electrolytes. With the helps from mechanical pressure and interface layer, this design exhibits the improved electrochemical performances, much better than that without pressure or without the layer. The full cells of Li3P/LiCl-coated Li//LiFePO4, show a capacity of 1.69 mAh cm(-2) after 1000 cycles under pressure at 3.9 mA cm(-2) with a capacity retention of 99.5% in carbonates. The results indicate the promising potential for the pressure effect to be used for advanced Li metal anodes.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 64 条
  • [1] A Scalable Approach to Dendrite-Free Lithium Anodes via Spontaneous Reduction of Spray-Coated Graphene Oxide Layers
    Bai, Maohui
    Xie, Keyu
    Yuan, Kai
    Zhang, Kun
    Li, Nan
    Shen, Chao
    Lai, Yanqing
    Vajtai, Robert
    Ajayan, Pulickel
    Wei, Bingqing
    [J]. ADVANCED MATERIALS, 2018, 30 (29)
  • [2] Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth
    Barai, Pallab
    Higa, Kenneth
    Srinivasan, Venkat
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) : A2654 - A2666
  • [3] Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
    Bieker, Georg
    Winter, Martin
    Bieker, Peter
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) : 8670 - 8679
  • [4] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [5] Stress evolution and capacity fade in constrained lithium-ion pouch cells
    Cannarella, John
    Arnold, Craig B.
    [J]. JOURNAL OF POWER SOURCES, 2014, 245 : 745 - 751
  • [6] 3D Printed High-Performance Lithium Metal Microbatteries Enabled by Nanocellulose
    Cao, Daxian
    Xing, Yingjie
    Tantratian, Karnpiwat
    Wang, Xiao
    Ma, Yi
    Mukhopadhyay, Alolika
    Cheng, Zheng
    Zhang, Qing
    Jiao, Yucong
    Chen, Lei
    Zhu, Hongli
    [J]. ADVANCED MATERIALS, 2019, 31 (14)
  • [7] 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries
    Cha, Eunho
    Patel, Mumukshu D.
    Park, Juhong
    Hwang, Jeongwoon
    Prasad, Vish
    Cho, Kyeongjae
    Choi, Wonbong
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (04) : 337 - +
  • [8] Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
    Cheng, Xin-Bing
    Yan, Chong
    Chen, Xiang
    Guan, Chao
    Huang, Jia-Qi
    Peng, Hong-Jie
    Zhang, Rui
    Yang, Shu-Ting
    Zhang, Qiang
    [J]. CHEM, 2017, 2 (02): : 258 - 270
  • [9] Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
    Cheng, Xin-Bing
    Hou, Ting-Zheng
    Zhang, Rui
    Peng, Hong-Jie
    Zhao, Chen-Zi
    Huang, Jia-Qi
    Zhang, Qiang
    [J]. ADVANCED MATERIALS, 2016, 28 (15) : 2888 - 2895
  • [10] A Review of Solid Electrolyte Interphases on Lithium Metal Anode
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Wei, Fei
    Zhang, Ji-Guang
    Zhang, Qiang
    [J]. ADVANCED SCIENCE, 2016, 3 (03)