Medical Image Fusion With Parameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain

被引:499
作者
Yin, Ming [1 ]
Liu, Xiaoning [1 ]
Liu, Yu [2 ]
Chen, Xun [3 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Elect Sci & Technol, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Activity level measure; image fusion; medical imaging; nonsubsampled shearlet transform (NSST); pulse coupled neural network (PCNN); INFORMATION;
D O I
10.1109/TIM.2018.2838778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image fusion method in nonsubsampled shearlet transform (NSST) domain is proposed. In the proposed method, the NSST decomposition is first performed on the source images to obtain their multiscale and multidirection representations. The high-frequency bands are fused by a parameter-adaptive pulse-coupled neural network (PA-PCNN) model, in which all the PCNN parameters can be adaptively estimated by the input band. The low-frequency bands are merged by a novel strategy that simultaneously addresses two crucial issues in medical image fusion, namely, energy preservation and detail extraction. Finally, the fused image is reconstructed by performing inverse NSST on the fused high-frequency and low-frequency bands. The effectiveness of the proposed method is verified by four different categories of medical image fusion problems [computed tomography (CT) and magnetic resonance (MR), MR-T1 and MR-T2, MR and positron emission tomography, and MR and singlephoton emission CT] with more than 80 pairs of source images in total. Experimental results demonstrate that the proposed method can obtain more competitive performance in comparison to nine representative medical image fusion methods, leading to state-of-the-art results on both visual quality and objective assessment.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 45 条
[1]   A new contrast based multimodal medical image fusion framework [J].
Bhatnagar, Gaurav ;
Wu, Q. M. Jonathan ;
Liu, Zheng .
NEUROCOMPUTING, 2015, 157 :143-152
[2]   Directive Contrast Based Multimodal Medical Image Fusion in NSCT Domain [J].
Bhatnagar, Gaurav ;
Wu, Q. M. Jonathan ;
Liu, Zheng .
IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (05) :1014-1024
[3]   Human visual system inspired multi-modal medical image fusion framework [J].
Bhatnagar, Gaurav ;
Wu, Q. M. Jonathan ;
Liu, Zheng .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (05) :1708-1720
[4]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[5]   A New Automatic Parameter Setting Method of a Simplified PCNN for Image Segmentation [J].
Chen, Yuli ;
Park, Sung-Kee ;
Ma, Yide ;
Ala, Rajeshkanna .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06) :880-892
[6]   MRI and PET image fusion by combining IHS and retina-inspired models [J].
Daneshvar, Sabalan ;
Ghassemian, Hassan .
INFORMATION FUSION, 2010, 11 (02) :114-123
[7]   A Neuro-Fuzzy Approach for Medical Image Fusion [J].
Das, Sudeb ;
Kundu, Malay Kumar .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (12) :3347-3353
[8]   Anatomical-Functional Image Fusion by Information of Interest in Local Laplacian Filtering Domain [J].
Du, Jiao ;
Li, Weisheng ;
Xiao, Bin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) :5855-5866
[9]   An overview of multi-modal medical image fusion [J].
Du, Jiao ;
Li, Weisheng ;
Lu, Ke ;
Xiao, Bin .
NEUROCOMPUTING, 2016, 215 :3-20
[10]   Union Laplacian pyramid with multiple features for medical image fusion [J].
Du, Jiao ;
Li, Weisheng ;
Xiao, Bin ;
Nawaz, Qamar .
NEUROCOMPUTING, 2016, 194 :326-339