QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA

被引:142
作者
Liu, Wei [1 ,2 ]
Ofman, Leon [3 ,4 ]
Nitta, Nariaki V. [1 ]
Aschwanden, Markus J. [1 ]
Schrijver, Carolus J. [1 ]
Title, Alan M. [1 ]
Tarbell, Theodore D. [1 ]
机构
[1] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
[2] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA
[3] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
Sun: activity; Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: oscillations; waves; EXTREME-ULTRAVIOLET WAVE; CORONAL MASS EJECTION; KELVIN-HELMHOLTZ INSTABILITY; H-ALPHA MORETON; EIT WAVES; LOOP OSCILLATIONS; ACTIVE-REGION; SOLAR CORONA; HIGH-CADENCE; SHOCK-WAVES;
D O I
10.1088/0004-637X/753/1/52
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than or similar to R-circle dot/2 along the solar surface, with initial velocities up to 1400 km s(-1) decelerating to similar to 650 km s(-1). The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by similar to 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.
引用
收藏
页数:17
相关论文
共 143 条
[31]   THREE-DIMENSIONAL MORPHOLOGY OF A CORONAL PROMINENCE CAVITY [J].
Gibson, S. E. ;
Kucera, T. A. ;
Rastawicki, D. ;
Dove, J. ;
De Toma, G. ;
Hao, J. ;
Hill, S. ;
Hudson, H. S. ;
Marque, C. ;
McIntosh, P. S. ;
Rachmeler, L. ;
Reeves, K. K. ;
Schmieder, B. ;
Schmit, D. J. ;
Seaton, D. B. ;
Sterling, A. C. ;
Tripathi, D. ;
Williams, D. R. ;
Zhang, M. .
ASTROPHYSICAL JOURNAL, 2010, 724 (02) :1133-1146
[32]   Chromospheric waves observed in the HeI spectral line (λ=10830 Å):: A closer look [J].
Gilbert, HR ;
Holzer, TE .
ASTROPHYSICAL JOURNAL, 2004, 610 (01) :572-587
[33]   EUV WAVE REFLECTION FROM A CORONAL HOLE [J].
Gopalswamy, N. ;
Yashiro, S. ;
Temmer, M. ;
Davila, J. ;
Thompson, W. T. ;
Jones, S. ;
McAteer, R. T. J. ;
Wuelser, J-P ;
Freeland, S. ;
Howard, R. A. .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 691 (02) :L123-L127
[34]   Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient [J].
Grechnev, V. V. ;
Afanasyev, A. N. ;
Uralov, A. M. ;
Chertok, I. M. ;
Eselevich, M. V. ;
Eselevich, V. G. ;
Rudenko, G. V. ;
Kubo, Y. .
SOLAR PHYSICS, 2011, 273 (02) :461-477
[35]   Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. I. Reconciliation of "EIT Waves", Type II Radio Bursts, and Leading Edges of CMEs [J].
Grechnev, V. V. ;
Uralov, A. M. ;
Chertok, I. M. ;
Kuzmenko, I. V. ;
Afanasyev, A. N. ;
Meshalkina, N. S. ;
Kalashnikov, S. S. ;
Kubo, Y. .
SOLAR PHYSICS, 2011, 273 (02) :433-460
[36]   Imaging and spectroscopic investigations of a solar coronal wave: Properties of the wave front and associated erupting material [J].
Harra, LK ;
Sterling, AC .
ASTROPHYSICAL JOURNAL, 2003, 587 (01) :429-438
[37]   SPECTROSCOPIC OBSERVATIONS OF A CORONAL MORETON WAVE [J].
Harra, Louise K. ;
Sterling, Alphonse C. ;
Goemoery, Peter ;
Veronig, Astrid .
ASTROPHYSICAL JOURNAL LETTERS, 2011, 737 (01)
[38]   Damped large amplitude transverse oscillations in an EUV solar prominence, triggered by large-scale transient coronal waves [J].
Hershaw, J. ;
Foullon, C. ;
Nakariakov, V. M. ;
Verwichte, E. .
ASTRONOMY & ASTROPHYSICS, 2011, 531
[39]   Momentum Distribution in Solar Flare Processes [J].
Hudson, H. S. ;
Fletcher, L. ;
Fisher, G. H. ;
Abbett, W. P. ;
Russell, A. .
SOLAR PHYSICS, 2012, 277 (01) :77-88
[40]   X-ray observations of a large-scale solar coronal shock wave [J].
Khan, JI ;
Aurass, H .
ASTRONOMY & ASTROPHYSICS, 2002, 383 (03) :1018-1031