Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent

被引:61
作者
Zha, Zhengbao [2 ]
Teng, Weibing [2 ]
Markle, Valerie [3 ,4 ]
Dai, Zhifei [1 ]
Wu, Xiaoyi [2 ,3 ,4 ]
机构
[1] Peking Univ, Dept Biomed Engn, Coll Engn, Beijing 100871, Peoples R China
[2] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
[3] Univ Arizona, Biomed Engn Program, Tucson, AZ 85721 USA
[4] Univ Arizona, Inst Bio5, Tucson, AZ 85721 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
electrospinning; gelatin nanofibers; mechanical property; cytobiocompatibility; GUIDED TISSUE REGENERATION; CROSS-LINKING; MECHANICAL-PROPERTIES; ELECTROSPUN GELATIN; COLLAGEN; FIBERS; POLYMER; DIFFERENTIATION; STABILITY; MATRICES;
D O I
10.1002/bip.22120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electrospinning of natural polymer nanofibers useful for biomedical applications often requires the use of cytotoxic organic solvents. In this study, gelatin nanofibers are electrospun from phosphate buffer saline/ethanol binary mixtures as a benign solvent at ambient temperature. The influences of ionic strength, ethanol concentration, and gelatin concentration on the electrospinnability of gelatin solutions and the fiber microarchitectures are analyzed. The electrospun scaffolds retain their morphologies during vapor-phase crosslinking with glutaraldehyde in ethanol and the subsequent removal of salts contained in the nanofibers via water rinsing. When fully hydrated, the mechanically preconditioned scaffolds display a Young's modulus of 25.5 +/- 5.3 kPa, tensile strength of 55.5 +/- 13.9 kPa, deformability of 160 +/- 15%, and resilience of 89.9 +/- 1.8%. When cultured on the gelatin scaffolds, 3T3 fibroblasts displayed spindle-like morphology, similar to the cell's normal morphology in a 3D extracellular matrix. (c) 2012 Wiley Periodicals, Inc. Biopolymers 97:10261036, 2012.
引用
收藏
页码:1026 / 1036
页数:11
相关论文
共 39 条
[1]  
Abe H., 1996, DATA BOOK MECH PROPE
[2]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[3]   Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts [J].
Amatangelo, MD ;
Bassi, DE ;
Klein-Szanto, AJP ;
Cukierman, E .
AMERICAN JOURNAL OF PATHOLOGY, 2005, 167 (02) :475-488
[4]   Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].
Awad, HA ;
Wickham, MQ ;
Leddy, HA ;
Gimble, JM ;
Guilak, F .
BIOMATERIALS, 2004, 25 (16) :3211-3222
[5]   Characterization of gelatin nanofibers electrospun using ethanol/formic acid/water as a solvent [J].
Chen, Hsin-Chieh ;
Jao, Win-Chun ;
Yang, Ming-Chien .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2009, 20 (02) :98-103
[6]   Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution [J].
Chong, E. J. ;
Phan, T. T. ;
Lim, I. J. ;
Zhang, Y. Z. ;
Bay, B. H. ;
Ramakrishna, S. ;
Lim, C. T. .
ACTA BIOMATERIALIA, 2007, 3 (03) :321-330
[7]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[8]   Electrospinning of Collagen Nanofiber Scaffolds from Benign Solvents [J].
Dong, Bin ;
Arnoult, Olivier ;
Smith, Meghan E. ;
Wnek, Gary E. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (07) :539-542
[9]   Regulation of electrospun scaffold stiffness via coaxial core diameter [J].
Drexler, J. W. ;
Powell, H. M. .
ACTA BIOMATERIALIA, 2011, 7 (03) :1133-1139
[10]   Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration [J].
Francis, Lijo ;
Venugopal, J. ;
Prabhakaran, Molamma P. ;
Thavasi, V. ;
Marsano, E. ;
Ramakrishna, S. .
ACTA BIOMATERIALIA, 2010, 6 (10) :4100-4109