Heightening mechanical properties and thermal shock resistance of low-carbon magnesia-graphite refractories through the catalytic formation of nanocarbons and ceramic bonding phases

被引:37
作者
Zhu, Tianbin [1 ,2 ]
Li, Yawei [1 ,2 ]
Sang, Shaobai [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Natl Prov Joint Engn Res Ctr High Temp Mat & Lini, Wuhan 430081, Hubei, Peoples R China
关键词
Nanocarbons; Ceramic bonding phases; Mechanical properties; Thermal shock resistance; Magnesia-graphite refractories; MGO-C REFRACTORIES; PHENOLIC RESINS; SPINEL WHISKERS; MICROSTRUCTURE; BEHAVIOR; PYROLYSIS; NANOTUBES; AL; TEMPERATURE; EVOLUTION;
D O I
10.1016/j.jallcom.2018.12.310
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The in situ catalytic formation of nanocarbons and ceramic bonding phases in low-carbon magnesia -graphite refractories is one of the significant strategies for heightening their mechanical properties and thermal shock resistance. Here, effect of aluminum content and nickel-containing catalyst addition on microstructural evolution, mechanical and thermo-mechanical behavior of such refractories was explored. Under the function of the catalyst, addition of aluminum powders allowed the newly growth of plenty of nanocarbons (e.g., carbon nanotubes and carbon onions), and also accelerated the in - situ formation of more ceramic bonding phases (e.g., magnesia whiskers and spinel whiskers/particles, etc.) in samples. This occurrence optimized significantly the microstructure of samples, correspondingly giving rise to their superior mechanical properties and thermal shock resistance. This work might provide a path for exploring low-carbon magnesia-graphite refractories with high performances. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:990 / 1000
页数:11
相关论文
共 46 条
[1]   Nano carbon containing MgO-C refractory: Effect of graphite content [J].
Bag, Mousom ;
Adak, Sukumar ;
Sarkar, Ritwik .
CERAMICS INTERNATIONAL, 2012, 38 (06) :4909-4914
[2]   Study on low carbon containing MgO-C refractory: Use of nano carbon [J].
Bag, Mousom ;
Adak, Sukumar ;
Sarkar, Ritwik .
CERAMICS INTERNATIONAL, 2012, 38 (03) :2339-2346
[3]   Thermal conductivity of MgO-C refractory ceramics: Effects of pyrolytic liquid and pyrolytic carbon black obtained from waste tire [J].
Bahtli, Tuba ;
Hopa, Derya Yesim ;
Bostanci, Veysel Murat ;
Yasti, Serife Yalcin .
CERAMICS INTERNATIONAL, 2018, 44 (12) :13848-13851
[4]   The influence of B4C and MgB2 additions on the behavior of MgO-C bricks [J].
Campos, Karma S. ;
Lenz e Silva, Guilherme F. B. ;
Nunes, Eduardo H. M. ;
Vasconcelos, Wander L. .
CERAMICS INTERNATIONAL, 2012, 38 (07) :5661-5667
[5]   Corrosion and penetration behaviors of slag/steel on the corroded interfaces of Al2O3-C refractories: Role of Ti3AlC2 [J].
Chen, Junfeng ;
Chen, Liugang ;
Wei, Yaowu ;
Li, Nan ;
Zhang, Shaowei .
CORROSION SCIENCE, 2018, 143 :166-176
[6]   Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: Antioxidant or alternative carbon source? [J].
Chen, Junfeng ;
Li, Nan ;
Hubalkova, Jana ;
Aneziris, C. G. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (09) :3387-3394
[7]   Influence of Ti3AlC2 on microstructure and thermal mechanical properties of Al2O3-Ti3AlC2-C refractories [J].
Chen, Junfeng ;
Li, Nan ;
Yan, Wen ;
Wei, Yaowu ;
Han, Bingqiang .
CERAMICS INTERNATIONAL, 2016, 42 (12) :14126-14134
[8]   The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks [J].
Gokce, A. S. ;
Gurcan, C. ;
Ozgen, S. ;
Aydin, S. .
CERAMICS INTERNATIONAL, 2008, 34 (02) :323-330
[9]   Reduced brittleness of multi-walled carbon nanotubes (MWCNTs) containing Al2O3-C refractories with boron carbide [J].
Liao, Ning ;
Li, Yawei ;
Jin, Shengli ;
Sang, Shaobai ;
Liu, Gengfu .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 698 :80-87
[10]   Effect of Submicron-Carbon-Containing MgO-C Refractories on Carbon Pickup of Ultra-Low Carbon Steel [J].
Liu, Y. ;
Wang, L. ;
Li, G. ;
Zhang, Z. ;
Xu, X. ;
Li, Y. ;
Chen, J. .
JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, 2018, 9 (02) :141-148