Improving shipboard electronics cooling system by optimizing the heat sinks configuration

被引:17
|
作者
Maleki, Hamid [1 ]
Safaei, Mohammad Reza [2 ,3 ,4 ]
Leon, Arturo S. [5 ]
Muhammad, Taseer [6 ]
Truong Khang Nguyen [7 ,8 ]
机构
[1] Isfahan Univ Technol, Dept Mech Engn, Esfahan 8415683111, Iran
[2] Florida Int Univ, Dept Mech Engn, Miami, FL 33174 USA
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] King Abdulaziz Univ, Fac Engn, Mech Engn Dept, Jeddah, Saudi Arabia
[5] Florida Int Univ, Dept Civil & Environm Engn, Miami, FL 33174 USA
[6] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
[7] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Phys, Ho Chi Minh City, Vietnam
[8] Ton Duc Thang Univ, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam
关键词
Forced convection; Laminar flow; Perforated fin; Plate -fin heat sink; Nusselt number; NATURAL-CONVECTION; PERFORATED FIN; PRESSURE-DROP; FLOW; PERFORMANCE; PLATE; NANOFLUID; ARRAY;
D O I
10.1016/j.joes.2021.09.013
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
With the increase of high-power electrical components in modern ships, especially fully electric ships with electric propulsion drive (EPD), the cooling of EPD electrical components has become particularly important. Providing optimal configurations for heat sinks with high thermal efficiency plays an essential role in this regard. A new technique for improving the efficiency of heat sinks is the utilization of perfo-rated fins. This study examined the effects of perforation geometry (shape and size) on laminar airflow flow and heat transfer characteristics over a perforated plate-fin heat sink. Three-dimensional simulations were conducted using the finite-volume scheme based on the SIMPLE algorithm. In this research, the ef-fects of perforation shape and size on various parameters, e.g., total drag force, average Nusselt number, perforated fin efficiency (PFE), heat transfer performance enhancement (HTPE), and fin optimization fac-tor ( 77) were evaluated. The results confirmed that at a specific heat transfer surface area for perforated fins, the highest efficiency is achieved by circular perforations.In contrast, the square perforations due to geometric similarity to rectangular fins could reach the maximum size. Consequently, fins with square perforations could achieve the most optimal configura-tion. Also, results showed that for a constant perforations size, change in perforations shape improves HTPE, PFE, and 77 by more than 40%, 45%, and 110%, respectively. Also, by modifying perforations size for a specified shape, an increment of more than 35%, 40%, and 150% is observed in HTPE, PFE, and 77, respectively.(c) 2021 Shanghai Jiaotong University. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页码:498 / 508
页数:11
相关论文
共 50 条
  • [1] Analysis of microchannel heat sinks, for electronics cooling
    Zhao, CY
    Lu, TJ
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (24) : 4857 - 4869
  • [2] A comprehensive review on microchannel heat sinks for electronics cooling
    Yu, Zhi-Qiang
    Li, Mo-Tong
    Cao, Bing-Yang
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (02)
  • [3] A comprehensive review on microchannel heat sinks for electronics cooling
    Zhi-Qiang Yu
    Mo-Tong Li
    Bing-Yang Cao
    International Journal of Extreme Manufacturing, 2024, 6 (02) : 137 - 167
  • [4] Optimal design for PPF heat sinks in electronics cooling applications
    Chen, HT
    Horng, JT
    Chen, PL
    Hung, YH
    JOURNAL OF ELECTRONIC PACKAGING, 2004, 126 (04) : 410 - 422
  • [5] Study on Thermosyphon for Shipboard High Power Electronics Cooling System
    Liu, Qiusheng
    Fukuda, Katsuya
    Sutopo, Purwono F.
    PROCEEDINGS OF ISHTEC2012, 4TH INTERNATIONAL SYMPOSIUM ON HEAT TRANSFER AND ENERGY CONSERVATION, 2011, : 134 - 138
  • [6] Transient simulation of finned heat sinks embedded with PCM for electronics cooling
    Arshad, Adeel
    Jabbal, Mark
    Sardari, Pouyan Talebizadeh
    Bashir, Muhammad Anser
    Faraji, Hamza
    Yan, Yuying
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 18
  • [7] Finned metal foam heat sinks for electronics cooling in forced convection
    Bhattacharya, A
    Mahajan, RL
    JOURNAL OF ELECTRONIC PACKAGING, 2002, 124 (03) : 155 - 163
  • [8] Jet Impingement Heat Sinks With Application Toward Power Electronics Cooling: A Review
    Klinkhamer, Corey
    Iyer, K. Lakshmi Varaha
    Etemadi, Majed
    Balachandar, Ram
    Barron, Ron
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2023, 13 (06): : 765 - 787
  • [9] Optimization of Piezoelectric Oscillating Fan-Cooled Heat Sinks for Electronics Cooling
    Petroski, James
    Arik, Mehmet
    Gursoy, Mustafa
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2010, 33 (01): : 25 - 31
  • [10] Optimal Design of Additively Manufactured Metal Lattice Heat Sinks for Electronics Cooling
    Bharadwaj, Bharath
    Singh, Prashant
    Mahajan, Roop L.
    PROCEEDINGS OF ASME 2022 HEAT TRANSFER SUMMER CONFERENCE, HT2022, 2022,