Perelman's entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature

被引:53
作者
Li, Xiang-Dong [1 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
关键词
LOGARITHMIC SOBOLEV INEQUALITIES; HEAT KERNEL; GRADIENT; DERIVATIVES; THEOREM; BOUNDS;
D O I
10.1007/s00208-011-0691-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Perelman's W-entropy formula for the heat equation associated with the Witten Laplacian on complete Riemannian manifolds via the Bakry-Emery Ricci curvature. Under the assumption that the m-dimensional Bakry-Emery Ricci curvature is bounded from below, we prove an analogue of Perelman's and Ni's entropy formula for the W-entropy of the heat kernel of the Witten Laplacian on complete Riemannian manifolds with some natural geometric conditions. In particular, we prove a monotonicity theorem and a rigidity theorem for the W-entropy on complete Riemannian manifolds with non-negative m-dimensional Bakry-Emery Ricci curvature. Moreover, we give a probabilistic interpretation of the W-entropy for the heat equation of the Witten Laplacian on complete Riemannian manifolds, and for the Ricci flow on compact Riemannian manifolds.
引用
收藏
页码:403 / 437
页数:35
相关论文
共 47 条
[1]  
[Anonymous], 2007, Clay Mathematics Institute Monographs
[2]  
[Anonymous], 1994, C P LECT NOTES GEOME
[3]   Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds [J].
Arnaudon, Marc ;
Thalmaier, Anton ;
Wang, Feng-Yu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3653-3670
[4]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[5]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[6]  
Bakry Dominique, 1985, SEMINAIRE PROBABILIT, P5, DOI 10.1007/BFb0075847
[7]  
Bakry Dominique, 2005, Theta Ser. Adv. Math., V4, P115
[8]   Perelman's Entropy and Doubling Property on Riemannian Manifolds [J].
Baudoin, Fabrice ;
Garofalo, Nicola .
JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (04) :1119-1131
[9]  
Cao HD, 2006, ASIAN J MATH, V10, P663
[10]  
Cao HD, 2006, ASIAN J MATH, V10, P165