SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation

被引:144
作者
Stoica, Petre [1 ]
Babu, Prabhu [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
Scarce data; Sparse parameter estimation methods; Robust covariance fitting; Maximum-likelihood method; SDP; SOCP; Spectral analysis; Range-Doppler imaging;
D O I
10.1016/j.sigpro.2011.11.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
SPICE (SParse Iterative Covariance-based Estimation) is a recently introduced method for sparse-parameter estimation in linear models using a robust covariance fitting criterion that does not depend on any hyperparameters. In this paper we revisit the derivation of SPICE to streamline it and to provide further insights into this method. LIKES (LIKelihood-based Estimation of Sparse parameters) is a new method obtained in a hyperparameter-free manner from the maximum-likelihood principle applied to the same estimation problem as considered by SPICE. Both SPICE and LIKES are shown to provide accurate parameter estimates even from scarce data samples, with LIKES being more accurate than SPICE at the cost of an increased computational burden. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1580 / 1590
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 2008, Neural Information Processing Systems (NIPS)
[2]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[3]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]   Fast Solution of l1-Norm Minimization Problems When the Solution May Be Sparse [J].
Donoho, David L. ;
Tsaig, Yaakov .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) :4789-4812
[6]   On compressive sensing applied to radar [J].
Ender, Joachim H. G. .
SIGNAL PROCESSING, 2010, 90 (05) :1402-1414
[7]   A tutorial on MM algorithms [J].
Hunter, DR ;
Lange, K .
AMERICAN STATISTICIAN, 2004, 58 (01) :30-37
[8]   CONDITIONS FOR NONNEGATIVENESS OF PARTITIONED MATRICES [J].
KREINDLE.E ;
JAMESON, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (01) :147-&
[9]   Compressed sensing MRI [J].
Lustig, Michael ;
Donoho, David L. ;
Santos, Juan M. ;
Pauly, John M. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :72-82
[10]   Optimally Tuned Iterative Reconstruction Algorithms for Compressed Sensing [J].
Maleki, Arian ;
Donoho, David L. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) :330-341