Adaptivity and a Posteriori Error Control for Bifurcation Problems III: Incompressible Fluid Flow in Open Systems with (2) Symmetry

被引:11
作者
Cliffe, K. Andrew [1 ]
Hall, Edward J. C. [1 ]
Houston, Paul [1 ]
Phipps, Eric T. [2 ]
Salinger, Andrew G. [2 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Sandia Natl Labs, Comp Sci Res Inst, Albuquerque, NM 87185 USA
基金
英国工程与自然科学研究理事会;
关键词
Incompressible flows; Bifurcation problems; A posteriori error estimation; Adaptivity; Discontinuous Galerkin methods; O(2) symmetry; DISCONTINUOUS GALERKIN METHODS; BREAKING BIFURCATION; STEADY;
D O I
10.1007/s10915-011-9545-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork bifurcation occurs when the underlying physical system possesses rotational and reflectional or (2) symmetry. Here, computable error bounds are derived based on employing the generalization of the standard Dual Weighted Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed error indicator on adaptively refined computational meshes are presented. Here, particular attention is devoted to the problem of flow through a cylindrical pipe with a sudden expansion, which represents a notoriously difficult computational problem.
引用
收藏
页码:153 / 179
页数:27
相关论文
共 30 条
[11]   Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z 2 Symmetry [J].
Cliffe, K. Andrew ;
Hall, Edward J. C. ;
Houston, Paul ;
Phipps, Eric T. ;
Salinger, Andrew G. .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (03) :389-418
[12]   Adaptivity and A Posteriori Error Control for Bifurcation Problems I: The Bratu Problem [J].
Cliffe, K. Andrew ;
Hall, Edward J. C. ;
Houston, Paul ;
Phipps, Eric T. ;
Salinger, Andrew G. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 8 (04) :845-865
[13]   ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR EIGENVALUE PROBLEMS ARISING IN INCOMPRESSIBLE FLUID FLOWS [J].
Cliffe, K. Andrew ;
Hall, Edward J. C. ;
Houston, Paul .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) :4607-4632
[14]  
Cliffe KA, 2000, INT J NUMER METH FL, V32, P175, DOI 10.1002/(SICI)1097-0363(20000130)32:2<175::AID-FLD912>3.0.CO
[15]  
2-5
[16]  
Cockburn B, 2005, MATH COMPUT, V74, P1067, DOI 10.1090/S0025-5718-04-01718-1
[17]  
Cockburn B, 2004, MATH COMPUT, V73, P569, DOI 10.1090/S0025-5718-03-01552-7
[18]   Local discontinuous Galerkin methods for the Stokes system [J].
Cockburn, B ;
Kanschat, G ;
Schotzau, D ;
Schwab, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :319-343
[19]  
Eriksson Kenneth, 1995, Acta Numerica, V4, P105, DOI [10.1017/S0962492900002531, DOI 10.1017/S0962492900002531, 10.1017/s0962492900002531]
[20]   NONLINEAR FLOW PHENOMENA IN A SYMMETRIC SUDDEN EXPANSION [J].
FEARN, RM ;
MULLIN, T ;
CLIFFE, KA .
JOURNAL OF FLUID MECHANICS, 1990, 211 :595-608